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Abstract

We consider a new model mixing sharp and diffuse interface approaches for seawater intrusion phe-
nomena in free aquifers. More precisely, a phase field model is introduced in the boundary conditions on
the virtual sharp interfaces. We thus include in the model the existence of diffuse transition zones but we
preserve the simplified structure allowing front tracking. The three-dimensional problem then reduces to a
two-dimensional model involving a strongly coupled system of partial differential equations of parabolic
type describing the evolution of the depths of the two free surfaces, that is the interface between salt- and
freshwater and the water table. We prove the existence of a weak solution for the model completed with ini-
tial and boundary conditions. We also prove that the depths of the two interfaces satisfy a coupled maximum
principle.
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1. Introduction

Seawater intrusion in coastal aquifers is a major problem for water supply. It motivates the
study of efficient and accurate models to simulate the displacement of saltwater front in unsatu-
rated porous media for the optimal exploitation of fresh groundwater.

Observations show that near the coasts fresh and salty underground water tends to separate
into two distinct layers. It was the motivation for the derivation of seawater intrusion models
treating salt- and freshwater as immiscible fluids (see [6] in unsaturated media). Points where
the salty phase disappears may be viewed as a sharp interface. Nevertheless the explicit tracking
of the interfaces remains unworkable to implement without further assumptions. An additional
assumption, the so-called Dupuit approximation, consists in considering that the hydraulic head
is constant along each vertical direction. It allows to assume the existence of a smooth sharp
interface. Classical sharp interface models are then obtained by vertical integration based on the
assumption that no mass transfer occurs between the fresh and the salty area (see e.g. [3,8,14]
and even the Ghyben—Herzberg static approximation). This class of models allows direct track-
ing of the salt front. Nevertheless the upscaling procedure perturbs the conservative form of the
equations. In particular the maximum principle does not apply. Of course fresh and salty water
are two miscible fluids. A physically correct approach shall include the existence of a transition
zone characterized by the variations of the salt concentration. Moreover, the aquifer being a par-
tially saturated porous medium, there is another transition zone between the completely saturated
part and the dry part of the reservoir. But such a realism is very heavy from theoretical (degen-
erate equations) and numerical (full 3D problem) points of view ([6], see also [2] when further
assuming a saturated medium; see [1] for numerical recipes).

In the present paper we choose a mixed approach. The model considered here takes advan-
tage of the Dupuit approximation and thus reduces to a two-dimensional upscaled model. The
three-dimensional character remains in the model through the free boundaries depths. We also
superimpose a phase-field model, here an Allen—Cahn model in fluid/fluid context, for the mod-
eling of the boundary conditions on the virtual sharp interfaces. We thus re-include in the model
the existence of diffuse transition zones.

From a theoretical point of view, the addition of the two diffusive areas has the following
advantages: The system has a parabolic structure, it is thus no longer necessary to introduce
viscous terms in a preliminary fixed point step for avoiding degeneracy as is in the demonstration
of [11]. But the main point is that we can demonstrate an efficient and logical maximum principle
from the point of view of physics, which is not possible in the case of classical sharp interface
approximation (see for instance [8,14]).

In the next section we present the model for the evolution of the depth % of the interface
between freshwater and saltwater and of the depth % of the interface between the saturated and
unsaturated zone. The derivation of the model is based on the coupling of Darcy’s law with
the mass conservation principle written for freshwater and saltwater. After vertical upscaling a
phase-field model is superimposed to mix the sharp and diffuse approaches. The resulting model
consists in a system of strongly and nonlinearly coupled PDEs of parabolic type. The main result
of the paper is presented in Section 3. We state an existence result of variational solutions for this
model completed by initial and boundary conditions. Section 4 is devoted to the proof. We apply
a Schauder fixed point strategy to a regularized problem penalized by the velocity of the fresh
front. Then we establish uniform estimates allowing to turn back to the original problem.
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Fig. 1. Transition zone with variable salt concentration and corresponding virtual sharp interface.

2. The sharp-diffuse interfaces model

We mention the textbooks [3—-5] for general informations about seawater intrusion problems.
For the three-dimensional description, we denote by (x, z), x = (x1,X2) € ]R2, z € R, the usual
coordinates. Subscript f (respectively s) refers to quantities involved in the freshwater (resp.
saltwater) domain.

Fluids and soil are considered to be incompressible. The basis of the modeling is the mass
conservation law for each ‘species’ (fresh and salt water) coupled with the classical Darcy law
for porous media:

V-qi=0i, qi=-K/V®;, K;=kgpi/ni, i=/fs. (D

We have denoted by ¢ and k the porosity and the permeability of the medium. Density (resp.
viscosity) of fluid i is p; (resp. ;). Since p s # py, the model is density driven. The gravitational
acceleration constant is g. The hydraulic conductivity K; expresses the ability of the underground
to conduct fluid i. The hydraulic head of fluid i is denoted by ®; and its Darcy velocity by g;.
Quantities Q; are generic source terms (for production and replenishment).

The next step consists in exploiting the slow dynamics of the displacement in the aquifer. It
let the fluids tend to the picture described in Fig. 1. We assume that an abrupt interface sepa-
rates two distinct domains, one for the saltwater and one for the freshwater. A sharp interface
is also assumed separating the saturated and the dry parts of the aquifer, thus neglecting the
thickness of the partially saturated zone. This approximation is justified because the thickness of
the capillarity fringe is much smaller than the distance to the ground surface. We will alleviate
these assumptions by re-including somehow mass transfers between layers. Before we integrate
vertically equations (1), thus reducing the 3D problem to a 2D problem. We use Dupuit approxi-
mation of vertical equipotentials which is actually based on the very small slope of the observed
interfacial layers.

The aquifer is represented by a three-dimensional domain Q2 X (h2, hpay), 2 C R2, function
hy (resp. hpmax) describing its lower (resp. upper) topography. For the sake of simplicity, we
assume that the upper surface of the aquifer is at constant depth, A, € R, and moreover that
hmax =0.

We denote by £ (respectively k) the depth of the free interface separating the freshwater layer
and the dry part of the aquifer (respectively the saltwater layer). Since we do not consider very
deep geologic formations, we assume that the pressure is constant and equal to the atmospheric
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pressure P, in the upper dry part of the aquifer, that is between z = k1 and z = 0. We impose

pressure equilibrium at the boundary of each area. More precisely, for the upper boundary:

Ifhy <hpax=0: Ppiz=pn, = Pa/prg +h1 — hye. 2
Ifhi =hpye=0: chlZ:hmax = a/pfg — href~

It follows that the right quantity for the hydraulic head @ s to be meaningful in the whole aquifer
is h| =inf(0, h1). The upper head equilibrium condition (2) reads q’fu:h; =Pu/prg+h| —
hrer. Similar elements on the depth of the salt interface 4 lead to introduce 2~ = inf(0, /).

Now we perform the vertical integration of (1). We begin with the freshwater zone between
depths 2™ and h} . We set:

@ ! hf@ d 0 ! /th d
=— zZ, =— zZ,
Uy =% ) ¢
1 [h 1 [h

~/ / / / ! / /
=5 (Kjv'os)dz=——- A (Kv'd)dz=-K)V'dy,
- 1 hy

A K’ dz,

f Bf Ji- raz

where By = h; — h™ is the thickness of the freshwater layer and V' = (9, dx,). We ap-
ply Leibnitz rule and we use Dupuit’s approximation, that is ® (x1, x2,2) =~ ) r(x1,x2),
x = (x1,x2) € Q, z € (h~,h]). The averaged mass conservation law for the freshwater then
reads

V' (BKpV'®p) — g,y V@ =)+ dpemp - VE =) +BpQp=0. ()
Similar computations in the saltwater layer give

V/ . (BSI%;V/&)S) + 4qs|z=h, * V(Z - h2) —Ys|z=h—" V(Z - h_) + Bs Qs = O’ (4)

where By = h™ — hj. At this point, we have obtained an undetermined system of two PDEs
(3)—(4) with four unknowns, &D,-, i=f,s,h and ™.

We now include in the model the continuity and transfer properties across interfaces.

First, continuity relations for pressures on the interfaces allow to properly reduce the number
of unknowns in Eqgs. (3)—(4). Indeed Dupuit approximation Cfbf >~ e=hy> &Df >~ ®y,—0 and

Dypomp- ®, combined with the definition of the hydraulic heads in term of pressures give

P

;= pf“g +hy —hyp, Pi€R, 3)

At by=—“ 4+ hT +ah™ — A+ o)y, a=2_1. (6)
pre oy

Here parameter « characterizes the densities contrast.
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The next step consists in the flux characterization. For the traditional sharp interface approach
there is no mass transfer across the interface between fresh and salt water z =h":

(%%_g).;,:@"i%_a).ﬁ:o, )

where 7 denotes the normal unit vector to the interface, 77 = |V(z — h™)|~'V(z — h™). Here
we couple (7) with a tri-stable Allen—Cahn phase-field equation, one ‘point’ of stability being
imposed on the sharp interface. Denoting by & the characteristic size of the diffuse transition
zone, the projection on the interface reads (see [7] for details):

—0h™+v-V(z—h")+3Ah =0. ®)
Combining (7) and (8), we obtain the following regularized Stefan type boundary condition:

qfje=h- V@ —h") =qg=p- - V@ —h")=¢@h™ —8A'h™)

= ¢(Xo(—=h)dh — 8V’ - (Xo(—h)V'h)) )
where we set
_ [0 if h<O
XO(h)_{l if h>0"

We perform the same reasoning for the upper capillary fringe. Likewise, we obtain
G fpmn - Vi —h) = ¢ (Xo(=h1)dhy — 8V’ - (Xo(—=h1)V'h1)) + 4Ly, (10)

where gry is a fresh leakage term. For the lower boundary z = h, situation is more simple.
Including a source term ¢z, accounting for leakage transfers coming from an eventual aquitard
under the aquifer, we write

qs(h2) - V(z — h2) = qrLs. an

Finally we add some assumptions, essentially introduced for the sake of simplicity of the
equations. The medium is supposed to be isotropic and the viscosity the same for the salt and
fresh water. It follows from (1) and p y = u, that

K;=(+a)K). (12)

We choose to base the model on the salt mass conservation and on the total mass conservation.
Rewriting (4) and summing up (3) and (4), we get

-1+ Ol)v/ : (BSK}V/&)S) + ds|z=h—* V(Z - hi)
—4s|z=h, * V(Z - h2) = By Qm
V(B RV~ (¥ (BRGE) 4V~ )

_LIslzzhz'V(Z_hZ) =Bfo+Bst-
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We also reverse the vertical axis thus changing A into —hy, h into —h, hj into —hy, z into —z.
Bearing in mind that now By = hy — h™, By = h™ — h{ and using (5)~(6), (9), (10) and (11),
we write the latter system as:

¢ Xo(h)d;h — V' - (ak}(hz —hHV'h) = V' (8¢ Xo(h)V'h)
= V' (K} Xo(h) (hy = hD)V'h1) = qrs (e, ki h) = = Oy (hy — b,
(M) ¢Xo(h)dh = V' - (K Xo(n) (W = h) + (ha — h)) V')
— V' (8¢ K Xo(h)V'hy) = V' - (K pau(hy — hH) Xo(h)V'h)
—qrr (e b h) = qrs (e hy h) = =0 p (' —h) — O (ha — ).

Leakage terms g1y and g are in the form (see [5])

qry(x,hi,h) = (1= xo(h1))xoth — h1)Qrs(x),

13)
qrs(x, ki, h) = xo(ha —h) Qs (0) (Res(x) +h1/2 + h/2).

Indeed we specify that only fresh exchanges are allowed in g ¢, thus the term xo(h — k1), and
that the semi-permeable zone is at depth £, = 0, thus the term (1 — xo(%1)) (we consider here
a phreatic aquifer: there is no leakage at the upper boundary unless the aquifer is fully saturated).
Only salty exchanges occur at the bottom, thus the term xo(ky — k) in gr;.
3. Mathematical setting and main results

We consider an open bounded domain €2 of R? describing the projection of the aquifer on the
horizontal plane. The boundary of €2, assumed C!, is denoted by I'. The time interval of interest
is (0, T), T being any nonnegative real number, and we set Q7 = (0, T') x 2.
3.1. Some auxiliary results

For the sake of brevity we shall write H L) = wl2(Q) and

V=H}(Q), V =H'Q), H=L*Q).

The embeddings V € H = H' C V' are dense and compact. For any T > 0, let W(0, T) denote
the space

W(,T):={weL*0,T; V), qweL*0,T;V"}

endowed with the Hilbertian norm || - [lw,7) = (Il - ||%2(0 rovy 19 ”iZ(o T‘V,))l/z. The fol-

lowing embeddings are continuous [10, Prop. 2.1 and Thm. 3.1, Chapter 1]
W(,T)CCU0, T [V, V/]%) =C(0,T]; H)
while the embedding

W(,T)C L*(0,T; H) (14)
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is compact (Aubin’s Lemma, see [13]). The following result by F. Mignot (see [9]) is used in the
sequel.

Lemma 1. Ler f : R — R be a continuous and nondecreasing function such that
limsup;; o0 [ f(W)/Al < 400. Let @ € L*(0,T; H) be such that 0,0 € L*(0,T; V') and
f(w) € L*0,T; V). Then

d ()
o f@ivy =5 [ ([ rorar)aymnpo.1)

Henceforall0<t; <tpb <T

153 w(t2,y)
[ o r@mvwar= [ ([ rwar)ay.
hn Q )

(t1,y)

3.2. Main results

We aim giving an existence result of physically admissible weak solutions for model (M)
completed by initial and boundary conditions.

First we re-write the model (M) with some notational simplifications. The ‘primes’ are
suppressed in the differentiation operators in R?. Source terms are denoted without ‘tildes’. Per-
meability I?’f is now denoted by K. We set « = 1. We assume that depth A5 is constant, 4 > 0.
We define some functions 7y and Ty by

Tsu)=hy—u, Tru)=u, forue(0,hy).

These functions are extended continuously and constantly outside (0, /7). We then consider the
following set of equations in Q7:

¢ h —V - (KT;(h) Xo(h)Vh) =V - (8¢ Vh) — V - (KT (h) Xy (h1)Vh)
—¢qrLs(x, hi, h) = —QTs(h), 15)
$oh1 =V - (K (Ty(h =) + Xo(h)Ts(W)) Vhi) =V - (3K Vhy)
— V- (KT;(h)Xo(h1)Vh)
—¢qrp(x, hi,h) —dqrs(x, hi,h) = —=QTr(h —hy) — Qs Ts(h). (16)
Notice that we do not use 2™ = sup(0, ) and hT = sup(0, k1) in functions T and Ty because
a maximum principle will ensure that these supremums are useless. Likewise, we have canceled
the terms Ap(h) (resp. Xp(hy)) in front of 9,4 and Vi (resp. d;h1). Substitution of all the terms
in the form V - (K T;(h)Vh) by V - (Xo(h1)K T3 (h)Vh) does not change the physical meaning
of the problem. System (16) is completed by the following boundary and initial conditions:
hZhD, h]ZhLD ian(O, T), (17)
h(0,x) =ho(x), hi(0,x) =hio(x) ing2, (18)
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with the compatibility conditions

ho(x) =hp(0,x), hio(x)=h;p0,x), xeTl.

Let us now detail the mathematical assumptions. We begin with the characteristics of the
porous structure. We assume the existence of two positive real numbers K_ and K such that
the hydraulic conductivity tensor is a bounded elliptic and uniformly positive definite tensor:

O<K_ 57 < Y Kij0&& <Kl <oo xeQ, &R &0
i,j=1.2

‘We assume that porosity is constant in the aquifer. Indeed, in the field envisaged here, the effects
due to variations in ¢ are negligible compared with those due to density contrasts. From a math-
ematical point of view, these assumptions do not change the complexity of the analysis but rather
avoid cumbersome computations.

Source terms Q ¢ and Q; are given functions of LZ(O, T; H). Leakage terms gy and g are
defined by (13) where Qp¢, Q1 and Q4R are functions of L2(0, T; H) such that

Q0rr>0, 07,20, Rpy>0ae. inQ x (0,7). (19)

Assumption Q7 r > 0 a.e. in 27 means that the leakage through the aquitard is upwards (indeed
leakage occurs from low to high piezometric head, see [5]). We also assume

—(max(Qr,0) + max(Qy,0))ha + Q1 + QrsRrs = 0ae. in Q x (0, 7). (20)
This assumption which could appear rather technical is actually introduced because the aquifer’s
depth is at most A,. All the source terms thus have to compensate somehow. Assumption (20) is
the mathematical companion of the common-sense principle ‘a filled box can no more be filled
in’. Notice for instance that pumping of freshwater corresponds to assumption Oy <0 a.e. in
Q x (0, T). Functions hp and &1, p belong to the space L>(0, T; H' (Q)) N H' (0, T; (H'(Q))")
while functions A and k1 ¢ are in H L. Finally, we assume that the boundary and initial data
satisfy physically realistic conditions on the hierarchy of interfaces depths:

O<hip<hp=<hyae.inl'x(0,T), 0<hio<ho<hyae.inQ.
We state and prove the following existence result.
Theorem 1. Assume a low spatial heterogeneity for the hydraulic conductivity tensor:
K_<K;<2K_.

Then for any T > 0, problem (15)—(18) admits a weak solution (h, hy) satisfying (h — hp, hy —
h1,p) e W(0,T) x W(O, T). Furthermore the following maximum principle holds true:

0<hi(t,x) <h(t,x) <hy forae x € andforanyt e (0,T).
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Next section is devoted to the proof of Theorem 1. Let us sketch our strategy. First step con-
sists in using a Schauder fixed point theorem for proving an existence result for an auxiliary
regularized and truncated problem. More precisely we regularize the step function Xy with a
parameter € > 0 and we introduce a weight based on the velocity of the freshwater front in the
equation of the upper free interface. Subsequent difficulty is that the mapping used for the fixed
point approach has to be continuous in the strong topology of L2(0, T'; H'(£2)). We then prove
that we have sufficient control on the velocity of the fresh front to ignore the latter weight. We
show that the regularized solution satisfies the maximum principles announced in Theorem 1.
We finally show sufficient uniform estimates to let the regularization € tend to zero.

4. Proof

Without lost of generality, we can simplify the equations by taking null leakage terms g =
qLs = 0 for the existence proof. The leakage terms will be re-inserted when stating the maximum
principle results. Let € > 0 and pick a constant M > O that we will precise later. For any x € R* ,
we set

LM(x)=min<1,%).

Such a truncation Lj; was originally introduced in [12]. It allows to use the following point in
the estimates hereafter. For (g, g1) € (L°(0, T; H'(R)))?, setting (here || - Iz =1 llz20,7: 1))

d(g.81)=—Ts(@)Lu(IIVgill2)Var,

we have

ld(g, gDl 20, 1: 1) < Mha.

We also define a regularized step function for Ay by

o 0 if h; <0 € i 0 if h <0
XO(hl)_{l if h>0" Xo(h‘)_{hl/(h%+e)1/2 if hy>0.

Then 0 < X <1 and X5 — A) as € — 0. Introducing the regularization X of Xy, we replace
system (16) by the following one:

G he — V- (8pVhE) — V - (KT (h€) XS (h$)VRE)

— V- (KT (h) XS (W) Ly (I1VAS1112) V) = — Qs T (h°),
PO hS =V - (8¢VhS) — V- (K(Tf(hf — h$) + Ty (h) X¢ (hi))Vhﬁ)

— V- (KT (h) X5 (W) VRE) = —Q ¢ T (h€ — h§) — QO Ty (h°).

The proof is outlined as follows: In the first step, using the Schauder theorem, we prove that for
every T > 0 and every € > 0, the above regularized system completed by the initial and boundary
conditions
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h¢ Zh]_), /’li Zhl,D inI" x (0, T),

h€(0,x) = ho(x), h{(0,x)=hyo(x) ae.in L,
has a solution (h€, h{) such that (h¢ —hp,h{ —h1 p) € W(0,T) x W(0, T). We observe that
the sequence (h€ — hp, h] — hy1 p) is uniformly bounded in (L%(0, T; V))? and we show the
maximum principle 0 < hi (t,x) < he(t,x) < hy a.e. in Qr for every € > 0. Finally we prove
that any (weak) limit (%, 1) in (L2(0, T; H' () N H'(0, T; V'))? of the sequence (h€, k) is
a solution of the original problem.

4.1. Step I: existence for the regularized system

We now omit € for the sake of simplicity in the notations. Then the weak formulation of the
latter problem reads: for any w € V,

T
/ ¢>(8,h,w)vr,vdt+/ 8¢Vh~dexdt+/ KT,(h) XS (h)Vh - Vw dxdt
0 Qr Qr
—i—/ KTs(h)XS(hl)LM(HV/’H||L2)Vh1 -Vwdxdt
Qr

+ O Ty(hwdxdt =0, 21
Qr

T
/ ¢(3thlaw>v/,vdt+f 8¢Vh - Vwdxdt
0 Qr
+/ K((Xg(hl)Ts(h) + Tp(h —h1))Vh +Ts(h)9(§(h1)Vh) -Vwdxdt
Qr
+/ (QfTyr(h—hy)+ QsTs(h))wdxdt:O. (22)
Qr

For the fixed point strategy, we define the application F by

F:(L*0,T; H'(2))* — (L*(0, T; H' (2)))*
(h, ) —> F(h,hy) = (Fi(h,hy) =h, Fo(h, h) = hy),

where (h, h1) is the solution of the following variational problem:

T
/¢<ath,w>v/,v+/ 8¢Vh-Vw+/ KT (h)X§ (h)Vh - Vw
0 Qr Qr

+/ KT (W Ly (1IVhill12) X5 (h)Viy-Vw + | - Q5T (hyw =0, (23)
Qr Qr

T
/¢<ath1,w>vgv+/ 8¢Vh1-Vw+/ K(T; () XS (h) + Ty(h — h1))Vhy - Vw
0 Qr Qr

+/ KTS(E)Xg(ﬁl)Vh-Vw—i—/ (QfTs(h—hy) + Qs Ts(h))w =0, (24)
Qr Qr
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forany w € V. Indeed we know from classical parabolic theory (see e.g. [10]) that the linear vari-
ational system (23)—(24) admits a unique solution. The end of the present subsection is devoted
to the proof of a fixed point property for application F.

Continuity of F;: Let (4", 1) be a sequence of functions of L2(0,T; H' () x L>(0, T; H'(R2))
and (,h1) be a function of L2(0, T; H()) x L%(0, T; H'(2)) such that

(h", k™) — (h, h1) in L*(0, T5 H'(Q2)) x L*(0, T; H'(Q)).

We set i, = Fy(h", h'") and h = Fi (h, hiy). We aim showing that 1, — & in L*(0, T; H'(2)).
For all n € N, h,, satisfies (23). Choosing w = h,, — hp in the n-dependent counterpart of (23)
yields:

T
f ¢ (3 (hy —hp), (hy —hp))y ydt +/ (8¢ + KT (W) XS (W) Vhy - Vhy, dxdt
0 Q

T

— | KT, (W")Ly(IIVA} | 12) X5 (W) VR -V (hy — hp) dxdt
Qr

+/ (8¢ + KT, (W) XS (h}))Vhy, - Vhp dxdt
Qr
_ T
—fQ Qs Ts (h") (hn —hD)dxdt—fO ®(3;hp, (hy —hp))y:,vdt. (25

Function h, — hp belongs to L%(0,T: V)N HY0,T;V’) and then to C(0, T; L%(2)). Thus,
thanks moreover to Lemma 1, we write

T
¢ ¢
/0 & (@ (= hp), (hy = hp)) vyt = |l (- T) = hpll% — 1o — hpj=oll%-

Besides

69+ KT GG FD) T - Vst = 361V 1.

Then applying the Cauchy—Schwarz and Young inequalities, we get for any € > 0

(/Q (86 + KT, (") X5 )V - V|

< ¢+ K+h)IVhnllp200.7: ) IVADI L2072 1)

(8¢ + K4 h»)?
09+ Ryho)” IVADI2,
281

= ?”Vh"”LZ(o,T;H) + (0,T;H)’
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= [ KT L 1IVR112) 25 () VG - Vhy
T
SK+||d(/’_lnv/’_lrf)||L2(0,T;H)||th||L2(0 T:H)

2

K2
< MK ho|[Vhall 20 1) < h2 IIVh 2,

26, O.T:H)"

Since it depends on /4 p, the next term is simply estimated by
‘/ KT, (W) Ly (IIVA ]| 2) XS (W) VAT - Vhp dxdt
Qr
< K lld(", KD 20,7:m 1hD 20,711y < MK +h2llhDll 120,711

Finally we have

T
= [ #t@uho. thy = o var

¢ 2 8¢ 2 ¢ 2
= ﬁ'|athD||L2(0,T;(H1(Q))’) + Tth”LZ(O,T;Hl) + 7||hD||L2(0,T;H1)’
and
] 105112, L9
O.T:H) , 2
B /Q 0.y ")y — ) dct| < —— L1 4 2, — i .

Using all the latter estimates in (25), we get after simplifications

¢ 3¢
S T) = Bl + (- = &0V hnlla g 7

¢
=2

10513501 K2 M?
Lo Ky >h2

o = kol + (—5 "

2
||hD||L2(O,T;H1) + ﬁ'|athD||LZ(O,T;(H1(SZ))’)

¢/ hD||Hdt+—/ |l dt

+MK+h2||hD||L2(O,T;H1)+ ||hD||L2(0TH) (26)

(8¢(1 +&1) + K1 hy)?
281

We choose €1 such that §¢/2 — &1 > ¢p > 0 for some ¢y > 0. Relation (26) with the Gronwall
lemma enables to conclude that there exist real numbers Ay = Ay (¢, 8, K, ho, hp, ho, Qs, M)
and By = By (9,6, K, ho, hp, ha, Qs, M) depending only on the data of the problem such that

NhnllLoo©,1:0) < AM, NhanllL20.7:01) < Bum- 27)
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Hence the sequence (%), is uniformly bounded in L2(0,T; HY())NL>®(0, T; H). Notice that
the estimate in L°°(0, T'; H) is justified by the fact that we could make the same computations
replacing T by any t < T in the time integration. In the sequel, we set

Cy =max(Ay, By).

We now prove that (9;(h, — hp)), is bounded in L2(O, T; V'). Due to the assumption hp €
H' (0, T; (H'(R))), it will follow that (h,,), is uniformly bounded in H'(0, T; V'). We have

[10: (hn — hD)l| 20,72 V)

T
= sup ‘/0 (at(hn_hD)’w>V’,V’
<1

Nwll20.7.v)

T 1 - -
= sup 1 ‘/O —(0thp, W)y v — —(/Q (8¢ + K Ty (K" X5 (W) Vhy - Vw
=< T

Ilwlle(O.T;V)* d)

+ f KT (h") L (|| VR 12) X5 (B VY - Vo + f 0,7y (i"yw) )
Qr Qr
Since
(/ (8¢ + K Tu(B") XE (™)) Vi, -Vw‘
Qr
= (5¢ + K+h2)||hn||L2(0,T;H|(Q))||w||L2((),T;v)’
and since &, is uniformly bounded in L20, T; HY(Q)), we write
’ / (8¢ + K Tu (i) XE (W) Vhy - Vo dxdt’ < (8¢ + K4 ho)Cullwllzzorsvy- (28)
Qr
Furthermore we have
}/ Ty (") Ly (1A || 2) XE (R VI -dexdt} < Mhal[wll 20 71 (29)
Qr
and

‘ o QSTS(E”)wdxdt‘ < 1Qsliz2,7: mb2llwll20,7:v)- (30)
T

Summing up (28)—(30), we conclude that
10: (hn —hp)ll 1200, 7;v7) < Du, (€29)

ha
DM = ||alhD||iZ(0’T;(H1(Q))/) +8CM + X(K—‘,-CM + M+ ”QS”LZ(O,T;H))'
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We have proved that the sequence (h ”)n is uniformly bounded in the space L2(0, T; H'(2))N

H 1(0, T;V’). Using Aubin’s lemma, we extract a subsequence, not relabeled for convenience,
(hp)n, converging strongly in LZ(QT) and weakly in L2(0, T; H ()N HY0,T; V') to some
limit denoted by ¢. Using in particular the strong convergence in L*($27) and thus the conver-
gence a.e. in Q7, we check that £ is a solution of Eq. (23). The solution of (23) being unique, we
have £ = h.

It remains to prove that (%,,), actually tends to 4 strongly in space L2(0, T; H'(S2)). Subtract-
ing the weak formulation (23) to its n-dependent counterpart for the test function w = h, — h,
we get

/0T¢<at(hn e = By
+/Q (8¢ + KT, (W)X (h))V (hy — h) -V (hy — h)
r
—/QT K (T, (XS (B — Ty () XS (h1)) V (hy — 1) - Vi
+/szr K(Ts(ﬁ")LM(HVﬁ’l‘||L2)X5(ﬁ’l‘)vﬁ’1’ — Ty (W Ly (I1Vh1 1 12) X5 (h1)Viy) -V (hy — h)
+ /Q Q1 = T,) tha =) =0 (32)

Using assumption (l_z”,}_z'l') — (h,hy) in L20,T; HY()) x L%(0,T; H'(2)) and the above
results of convergence for 4,,, the limit as n — oo in (32) reduces to

n—oo

lim (/ (8¢ + KT (W) XS ()Y (hy — ) - V (hy, — h) a’xdt) =0.
Qr
Due to the positiveness of K, we infer from the latter relation that

lim (/ 86|V (hy — h)|? dxdt +/ K_T,(h")XE ()N (hy — h)|2dxdt) <0.
n—>0o0 QT

Qr

Hence Vh, — Vh strongly in L2(0,T; H). Continuity of Fj for the strong topology of
L*(0,T; H'()) is proved.

Continuity of F,: Likewise, we prove the continuity of F, by setting i, = Fo(h", i_z'l’) and
hy = fz(ﬁ, le) and showing that 1 , — h; in L2(0, T:H! (£2)). The key estimates are obtained
using the same type of arguments than in the proof of the continuity of /. We thus do not
detail the computations. Let us only emphasize that we can now use the estimate (27) previously
derived for 4", thus the dependence with regard to Cj; in the following estimates:

1hinllLory < Em = Em(¢,8, K, hi,0,h1,p,h2, Os, Q5, M, Cy), (33)
||h1,n||L2(0,T,H1) S FM = FM(¢787 Kahl,()vh],D’hz’ QS? Qf7 Ma CM)~ (34)
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We set
Ci,m =max(Ey, Fy).
One also computes that
1810111200 7:v7) < Di.uts (35)

1
Diy = py (8¢> + (2K+CM + K Cim +2(1Q 20711y + QA‘”LQ(O,T;H)))hZ)'

Conclusion. F is continuous in (L2(0, 7; H'(2)))? because its two components F; and F; are.
Furthermore, let A € Ri be the real number defined by

A=max(Cy, Dy, Ci,m, D1,m),

and W be the nonempty (strongly) closed convex bounded subset of space (L2(0, T'; H'(R2)))?
defined by

2
W={(g.e0 € (L20.T: H' @) N H'©O.T; V) (8(0), £10) = o, 11 0),
(gir, gur) = (hp, h1,p), 11(8, gl)||(L2(0,T;H1(Q))mHl(o,T;v/))z = A}-
We have shown that (W) C W. It follows from the Schauder theorem [15, Cor. 9.7] that there
exists (h,hy) € W such that F(h, hy) = (h, hy). This fixed point for F is a weak solution of
problem (21)—(22).

4.2. Step 2: elimination of the auxiliary function Ly

We now claim that there exists a real number B > 0, not depending on € neither on M, such
that any weak solution (&, h1) € W of problem (21)—(22) satisfies

IVallp20.0:m) < B and  [|Vhillp20.7.0) < B. (36)

Taking w =h — hp (resp. w =h1 — h1 p) in (21) (resp. (22)) leads to
T
f (k. h—hp)yy +/ 86N -V (h — hp)
0 Qr
+/ KT, X5 (h)Vh -V (h = hp)

Qr

- —/ KT, () XE () Lag (1[Vhi]1,2) Vo - V(h — hp)
Qr

A QsTs(h)(h — hp) (37

and
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T
/ ¢(3zh1,h1—h1,1))v’,v+/ 5¢Vhy -V (k1 — 1. p)
0 Qr
+/ K (Tu(0) XS (1) + Ty (h — b))y -y — Ry p)
Qr
=—/ KTy (W) X5 (h)Vh-V(hi —hi,p)
Qr
—/ (Q 5Ty (h — )+ QT (W) (hy — by p). (38)
Qr
Summing up relations (37) and (38), and using the decomposition

KVh-Vh+ KLy (|IVhill;2)Vhi - Vh+ KVhy - Vhy + KVh-Vh
=KV(h+h1) -V +h)+K(1—Ly(Vhi]l;2))Vhi - Vi
— K(1 = Ly([IVhill12))Vhi - V(h 4 hy),

we write
T
/0 ¢((0:(h —hp),h —hp)yrv + (3 (h1 —h1.p), h1 —h1. D)y v)
+/Q 8¢(Vh-Vh+ Vh .v111)+/Q KT,(WXS(h)V (h+hy) - V(h +hy)
+/QTK<(1—LM(||Vh1||Lz))Ts(h)X§(h1)+Tf(h—hl))Vhl-Vhl
=/QTK(1 — Ly (VI 1122)) Ts (W) XS () Vi - V(b + hy)
+/Q (8¢ + KT (W)X (h))Vh - Vhp
r
+/Q (8¢ + KT, (WXS (1) + KTp(h — h1))Vhy - Vhy p
r
—i—/QT KTS(h)LM(HVh]||L2)X5(h1)Vh1 -VhD—l—/QT KTS(h)XS(hl)Vh~Vh1,D
_/QT(QsTs(h)(h_hD)+(Qfo(h_hl)+QsTv(h))(hl —h1.p))

T
—/ ¢((0hp, h —hp)y v + (0hi,p,hi — h1.p)v'.v). (39)
0

Writing (39) as Z?:l Ji = Z}is Ji, we now estimate all the integral terms ‘J;’. We set u =
h —hp and v =h| — hy p. First, we note that
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|J1|=§/ (u%T,x)—u%(x))dx—l—%f (vz(T,x)—vg(x))dx,
Q Q
|Jg|=f 5¢|Vh|2dxdt+/ 8¢|Vhi | dxdt,
Qr Qr
[J3] Z/ K—Ts(h)XS(M)IV(h+h1)|2dxdt,
Qr

[ Jal = fQ K- (1= Lag (VA1) T (X5 () + T — ) ) [V 2 dxdr.

Next, applying the Cauchy—Schwarz and Young inequalities, we obtain the following set of esti-
mates for any &1 > 0:

K2
5= [ (0= a9 T2 o) (190 P o+ K196+ )P
Qr -

¢ a1 K
Ve VAP + 4+/ Ty (W) XS (hy) |V
Qr Qr

K4
+/Q (00 + 105 () Vi P

8¢ 1K
|J7|s/ —|Vh1|2+/ +
or 4 Qr

+ /Q (30 + 517G =) IV o +

[Js] 5/ e1ky
Qr

and

|J9|sf ks
Qr

|Jlo|s/ Ts<h)|qu|+/ Tf<h—h1>|va|dxdr+/ (W) Q; vl
Qr Qr Q

T

K
§(h)|Vhy |? +/ fo(h —h)| VA ?

Qr

1
?/ Ty XS () Vi p .

1Jar

K
)Xg(h1>|vm|2+/ 8—1+T3<h)L%V,(||Vh1||L2)X5(h1>|VhD|2,

Qr

K
/ LT, Vh1p?
Qr €l

3||Qs||L20TH 20051720 7.1 P ¢
222l OFM w2y Z [ wr+2 | P

a 2¢ 2 Jo, 2 Joy

’

1 2 1 2 ¢ 2
Il < Z/QT 8¢ |V(h —hp)] +4_1/QT 3¢ |V(hi —h1,p)| +5||3thI|Lz(O‘T;V/)

¢ 3¢ 2 2
—||3th10||Lz(OTV/)S 1 (thl + Vi) o, (IVhp|* + |Vhip|?)

(”alhD”L2(0 T:V)) + ”8[}11 D”LZ(O T: V/))

<>o|e.
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Summing up all these estimates, we obtain

¢/ WA(T, %) +¢/ V(T x)
Q Q

+fQ (56 — &1 K4 Ty (XS (b)) (IVA + VA )
T

+/ 2|Vh |2 ((K —K—}r)(l—L (IVR1ID) XS (h) Ty () + (K —&)T-(h—h ))
o 1 -TIK M 1 o (n1)Ts -— 51 1

+ 2/9 (K_Ty (XS () Lag (11VR1112)) IV (B + )
<¢ |u|2+¢/ lv|? +C,
Qr Qr

where C = C(ug, vo, hp, h1,p, h2, Oy, O r). We now aim applying the Gronwall lemma in the
latter relation. We thus choose 1 > 0 such as terms over the curly bracket are respectively posi-
tive and nonnegative, namely:

KT () X5 (hi)er <6,

1—Lyx)=1-—min(1,M/x)>0and K; <2K_.
The first condition is fulfilled if we choose for instance ¢ such that &; < §¢/(K4h2). The second
one follows the assumption on permeability in Theorem 1.

Now we apply the Gronwall lemma and we deduce that there exists a real number B, that
does not depend on € nor on M, such that

1700, 7; mynr20.1: 0@y =B and |kl o0, 7; myne20,7: 11 () = B-

In particular, [|[Vhill;2 7.y < B and this estimate does not depend on the choice of the
real number M that defines function L ;. Hence if we choose M = B, any weak solution of the
system

¢dh — V- (8¢Vh) =V - (KT, (h) XS (h1)Vh)

~ V- (KT (X5 (h) L (|| Vhil|2)Vhi) = =0, Ty (h),
¢0hy =V (8¢Vh1) = V- (K(Ty(h = hy) + T () X5 (h1) Vi)

— V- (KT (W X5 (h)Vh) = =Q Ty (h — h1) = Qs Ty (h)

in Q7, with the initial and boundary conditions
h=hpandhy =h;ponl, h(0,x) =hoand h1(0,x) =h;o(x) ae.in Q,

satisfies LB(||Vh1||Lz) = 1. Then the term LB(||Vh1||Lz) = 1 may be dropped.
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4.3. Step 3: maximum principles

We are going to prove that for almost every x € 2 and for all r € (0, T),
0 <hi(t,x) <h(t,x) < ha.

o First show that 4(¢, x) < hy a.e. x € Q and Vr € (0, T'). We set
= (h —h2) " =sup(0, h — hp) € L*(0, T; V).

It satisfies Vh,, = x{n>ny) VA and hy, (¢, x) # 0 iff h(z, x) > hy, where x denotes the character-
istic function. Let 7 € (0, T). Taking w(t, x) = h,, (t, X) x(0,7)(t) in (21) yields:

T T T
/ ¢<a,h,hmx(o,r)>vf,v+/ /8¢Vh-th+/ /KTs(h)XS(hl)Vthm
0 0 Q 0 Q
T T
+/ /KTs(h)LM(HVhI||Lz)X5(h1>Vh1-th+/ /QSTAh)hm:o,
0 Q 0 Q
that is
T T
f¢<ath,hm>w,v+f /8¢X{h>hz}|vm2
0 0 Q
T
+ / / KTy (W) XS (h1) Xhshy) | VR
0 Q
T
+f fKTs(mLM(HVhl||L2)X5<h1)vm V(. )
0 Q
T
+ f / 05T, () (x.1) = . (40)
0 Q

In order to evaluate the first term in the lefthand side of (40), we apply Lemma 1 with function
f defined by f(A) =A — ho, A € R. We write

fr¢(8,h,hn1)v/,vdt:?/ (h;(r,x)—hﬁ,(o,x))dXZQ/ h2 (1, x)dx,
0 2 Ja 2 Ja

since h,, (0, -) = (ho(-) — /’12(~))+ = 0. Since T (h) X{n>n,) = 0 by definition of Ty, the three last
terms in the lefthand side of (40) are null. Hence (40) becomes:

T
%/ h;(r,x)dxg—f /8¢X{h>h2}|Vh|2dxdt§0.
Q 0
Q

Then h, =0 a.e. in Qr. Including the leakage term g;, defined by (13) does not impact the
result because of the factor yg(ho — h) in its definition.
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e Now we claim that &1 (¢, x) < h(t,x) a.e. x € 2 and Vr € (0, T). We now set
hw = (h1 —h)" € L2(0, T; V).
Let r € (0, T). We recall that 4, (0, -) = 0 a.e. in € thanks to the maximum principle satisfied by

the initial data ¢ and &1 9. Moreover, V(h1 — h) - Vh,, = X, -0V (h1 — h)|2. Thus, taking
w(t, x) = hy(x,1)x0,:) () in (22) — (21) gives:

%fhﬁ,(r,xnf /8¢X{h1_h>0}|wh1—h>|2+/ /K(Xg(hl)mmm
Q 0 Q 0 Q

T
+Tf<h—h1))Vh1-th—/ /KT;(h)Xg(hoLM(nvm||Lz)vm~th
0 JQ

+/ / Q¢ Tr(h — h1)hy, =0. 1)
0 Q

Since T (h — h1) X{h,—n>0; = 0 by definition of Ty and since we now have M = B such that
Lg(|IVhillz2) = 1, we infer from (41) that

T
[ memar=— [ [ s6xum sl —nPdsdr <o
2 Ja 0o Je

Thus hy(t, ) <h(r,-) a.e.in Q and for any t € (0, T'). Presence of the leakage terms defined in
(13) does not change the picture. Indeed term ¢ ¢ disappears in the computation (22) — (21) and
qrshm = 0 because of the term xo(h — 1) in the definition of g7 5.

e Finally we show 0 < A (¢, x) a.e. x € Q2 and Vr € (0, T)). We now set
hw = (=m)" € L20,T; V).

Let 7 € (0,T). For this part of the proof, we re-include the leakage terms g,y and g4 in
the model because they appear in the assertion (20) which is used here. Taking w(z,x) =
—hy, (x, 1) x0,7)(t) in (22) leads to:

¢ T T
2 [ +f [ soxiavinf = [ [ k(manxsm
Q 0o Ja 0o Ja
T
+Tr(h— hl))Vhl -Vhy, —/ / KT(h)Xg (h1)Vh - Vhy,
0 JQ
T
- / / (QfTs(h—h1)+ QsTs(h) —qrf — qrs)hm =0. (42)
0 JQ
We note that if Vi, £ 0 then XOE (h1) = 0 because i1 < 0. We have moreover
T
—/ / K(Ts(h)XOE(hl) +Tr(h— hl))Vhl -Vh,, dxdt
0 JQ

T
z/ /Kfo(h—hl)X{h1<0}|Vhl|2dXdl‘,
0 Q
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and, due to assumptions (19) and (20),
T
—f / (QsTr(h—h1)+ QsTs(h) — gLy — qrs)hm dxdt > 0.
0o Ja
Eq. (42) thus gives:
¢ 2 i 2
A S (t,x)dtdx < A (8¢ + K_T¢(h — h)) xX(hy <03 | Vhi]* dxdt < 0.

We conclude that &, (7, -) =0, thatis A1 (7, ) >0, a.e. in Q forany 7 € (0, T).
4.4. Step 4: existence for the initial system

In the latter subsections, we have proved the existence of a weak solution (he,hﬁ) €
(L>(0,T; H)NL?(0, T; H! (sz)))2 of the regularized problem

P he =V - (8¢Vh) — V- (KT, (h)X5 (h)V (h€ + h9)) = — O Ty (h°), 43)
¢ h§ — V- (8¢ VhS) — V- (K (Tf(h® — hY) + Ts(h) XS (hS)) V)
— V- (KT, (h) XS (h)VA) = —Q s Ty (h€ — ) — Q, Ty (h°), 44

with the initial and boundary conditions
h®=hp, hi=h;pinl x (0,T), h,x)=ho, h§(0,x) =hio(x)ae.in Q.
Furthermore this solution satisfies the following maximum principle:
Vi€ (0,7), ae.x€Q, 0<hj(t,x)<h(t,x)<hy,

and the following uniform estimates (with respect to €):

(UE) { 1A L20,7: 11 (22)) = C ||h§||L2(0,T;H1(Q)) <C,
0:hllz20,7,v) = C, 0:h 5N 220, 7;v7y = C.

We now proceed to the last step in the proof of Theorem 1, namely we let ¢ — 0. We infer from
the above estimates that (b€ — hp). and (hi —h1,p)e are uniformly bounded in W (0, T'). We de-
duce thanks to the compactness result of Aubin that (A€ —hp). and (hi — h1,p)e are sequentially
compact in L2(0, T; H). Up to the extraction of a subsequence, not relabeled for convenience,
we claim that there exist functions 4 and h such that (h — hp, h1 — hy p) € W(O, T)2 and

h€ —> h in L?>(0, T; H) and a.e.in Q x (0, T),
h€ —~h weakly in L2(0, T; H' (RQ)),

dh¢ — 9;h  weakly in L2(0, T; V'),

h§ —> hy in L2(0, T; H) and a.e. in Q x (0, T),
hS — hy weakly in L2(0, T; H' (),

dh§ — d:hy weakly in L*(0,T; V).
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Letting € — 0 in the weak formulation of (43)—(44) and using the Lebesgue Theorem (thanks
to the uniform estimates (UE)), we get at once (15)—(16). The boundary and initial condition
(17)—(18) holds true since the map i € W(0, T) — i(0) € H is continuous. Furthermore (%, h1)
satisfies a maximum principle which is consistent with physical reality:

0<hi(x,t) <h(x,t) <hy, Vt€(0,T), a.e. x € Q.
The proof of Theorem 1 is complete.
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