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Université de Savoie, LAMA, CNRS UMR 5127,
Campus Scientifique, 73376 Le Bourget-du-Lac, France

L. Pankratov
Mathematical Division, Institute for Low Temperature Physics,
47 Lenin Ave., 310164, Kharkov, Ukraine
(leonid.pankratov@univ-pau.fr)

(MS received 18 June 2009; accepted 8 September 2009)

We study the asymptotic behaviour of solutions to a quasilinear equation with
high-contrast coefficients. The energy formulation of the problem leads to work with
variable exponent Lebesgue spaces Lpε(·) in a domain Ω with a complex
microstructure depending on a small parameter ε. Assuming only that the functions
pε converge uniformly to a limit function p0 and that p0 satisfy certain logarithmic
uniform continuity conditions, we rigorously derive the corresponding homogenized
problem which is completely described in terms of local energy characteristics of the
original domain. In the framework of our method we do not have to specify the
geometrical structure Ω. We illustrate our result with periodical examples, extending,
in particular, the classical extension results to variable exponent Sobolev spaces.

1. Introduction

A key feature of this paper is the study of variable exponent Lebesgue spaces. In
what follows, we briefly give some motivations and references. In 1931, W. Orlicz [15]
was the first to define variable exponent Lebesgue spaces. Very recently, V. V.
Zhikov [19] proposed the study of variational problems with non-standard growth
and coercivity conditions. At the same time, progress in physics made the study of
fluid properties of electrorheological fluids an important issue, used, for instance, in
robotics and space technology. As emphasized by W. Winslow in 1949, the viscosity
of such fluids in an electrical field is inversely proportional to the strength of the
field. The field induces string-like formations in the fluid which are parallel to the
field. They can raise the viscosity by many orders of magnitude. Thus, the mechan-
ical properties of electrorheological fluids, and especially the Winslow effect, can be
modelled using variable exponent Lebesgue and Sobolev spaces, Lp(·) and W 1,p(·).

495
c© 2010 The Royal Society of Edinburgh



496 C. Choquet

Roughly speaking, the energy of electrorheological fluids is calculated by minimizing
the Dirichlet energy integral

∫ |∇u(x)|p(x) dx, where p describes the characteristics
of the material as a function of the electric field. For some mathematical results
on the problem we refer the reader to [2, 17]. More recently, a new application
of variable exponent Lebesgue spaces to image restoration was proposed by Chen
et al . [9]. They minimize the energy

∫ |∇u(x)|p(x) + λ|u(x) − I(x)|2 dx, where the
input I is the true image corrupted by some noise. For classical image restoration,
the power p = 2 corresponds to isotropic smoothing, whereas p = 1 gives total vari-
ation smoothing. In [9] the exponent varies between these two extremes to control
the defaults of both procedures: the isotropic smoothing destroys all small details
from the image, while total variation smoothing creates edges where there were
none in the original image.

We study the asymptotic behaviour of solutions to a quasilinear equation of the
form

− div(Kε(x)|∇uε|pε(x)−2∇uε) + |uε|σ(x)−2uε = gε(x), x ∈ Ω, (1.1)

with a high-contrast coefficient Kε(x). Under the assumption that the functions
pε(x) converge uniformly to a limit function p0(x) and that p0 satisfies certain
logarithmic uniform continuity conditions, it is shown that uε converges, as ε → 0,
to the solution of a homogenized equation whose coefficients are calculated in terms
of local energy characteristics of the domainΩε. The equations that we consider here
arise, for example, from compressible flows in porous media, and non-Newtonian
flow through thin fissures. The homogenization problem is closely related to the
so-called double-porosity models widely discussed in the mathematical literature
(see, for instance, [13]). The linear double-porosity model was first studied in [6].
Nonlinear models were treated in [10, 16]. Then a general non-periodic model and
a random model were considered in [7] and [8], respectively. Instead of the above-
mentioned geometrical assumptions, we follow the approach introduced in [14] and
impose conditions on the so-called local energetic characteristics associated with the
boundary-value problem (1.1). These characteristics include a penalization term.
We turn back to usual geometrical assumptions in the last section of the paper by
illustrating our result with periodical examples. A key step is here the construction
of an appropriate extension operator from the fracture part to the whole domain
Ω. This construction extends the classical result of [1] to variable exponent Sobolev
spaces.

2. Statement of the problem and the main result

Let Ω = Ωε
f ∪ Ωε

m be a bounded domain of R
n, n � 2, with Lipschitz boundary

∂Ω. In what follows, ε is a small positive parameter characterizing the microscopic
length-scale. Here {Ωε

m}(ε>0) is a family of open subsets in Ω. We assume that the
set Ωε

m is distributed in an asymptotically regular way in Ω, i.e. for any ball B(y, r)
of radius r centred at y ∈ Ω and sufficiently small ε > 0, ε � ε0(r), the set Ωε

m

satisfies B(y, r) ∩ Ωε
m �= ∅ and B(y, r) ∩ Ωε

f �= ∅. We will assume, for the sake of
simplicity, that Ωε

m ∩ ∂Ω = ∅.

Remark 2.1. In the framework of the method presented in the paper we do not
specify the geometrical structure of the set Ωε

m. Generally speaking, it may consist
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Figure 1. The sets Ωε
m and Ωε

f .

of Nε, Nε → +∞ as ε → 0, small isolated components such that their diameters
go to zero as ε → 0 (see figure 1) or it may be defined as fibres becoming more and
more dense as ε → 0 such that the diameters of the fibres go to zero as ε → 0.

We consider growth functions in the class Pε
0 described below. First we recall

that a function p = p(x) defined in the domain Ω̄ satisfies the log-Hölder continuity
property if, for any x ∈ Ω, y ∈ Ω,

|p(x) − p(y)| � ω(|x− y|) with lim
τ→0

ω(τ) ln
(

1
τ

)
� C,

where C is a constant. This property was introduced by Zhikov to avoid Lavrentiev
phenomena [20]. A sequence of functions {pε}(ε>0) is said to belong to the class Pε

0
if it possesses the following properties.

(A1) For any ε > 0, there exist two real numbers p− and p+ such that the function
pε is bounded in the following sense:

1 < p− � p−
ε ≡ min

x∈Ω̄
pε(x) � pε(x) � max

x∈Ω̄
pε(x) ≡ p+

ε � p+ < +∞ in Ω̄.

(2.1)

(A2) For any ε > 0, pε satisfies the log-Hölder continuity property with the corre-
sponding function ωpε

.

(A3) The function pε converges uniformly in Ω to a function p0, i.e.

lim
ε→0

‖pε − p0‖C(Ω̄) = 0, (2.2)

where the limit function p0 is assumed to satisfy the log–Hölder continuity
property.

Note that the constant sequence {p0}(ε>0) belongs to the family Pε
0.

Let σ ∈ C(Ω̄) be such that

(A4) there exist two real numbers σ− and σ+ such that the function σ is bounded
in the following sense:

0 < σ− ≡ min
x∈Ω̄

σ(x) � σ(x) � max
x∈Ω̄

σ(x) ≡ σ+ < min
x∈Ω̄

p0(x)n
n− p0(x)

in Ω̄; (2.3)

(A5) the function σ satisfies the log-Hölder continuity property.
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In what follows, we refer to [5] (see also the references therein) for the properties
of Sobolev spaces with variable exponents. Here Lpε(·)(Ω) denotes the space of
measurable functions φ in Ω such that

Υpε(·),Ω(φ) def=
∫

Ω

|φ(x)|pε(x) dx < +∞. (2.4)

This space endowed with the norm ‖φ‖Lpε(·)(Ω) = inf{λ > 0 : Υpε(·),Ω(φ/λ) � 1} is
a Banach space. Following [5], for any ε > 0 we define the Sobolev space with
variable exponent pε, W 1,pε(·)(Ω) by

W 1,pε(·)(Ω) = {φ ∈ Lpε(·)(Ω) : |∇φ| ∈ Lpε(·)(Ω)}.
The space W 1,p(·)

0 (Ω) is the closure of the set C∞
0 (Ω) with respect to the norm

of W 1,p(·)(Ω). We recall the well-known embedding result for Sobolev spaces with
variable exponents. Namely, if p and q are continuous functions in Ω and

1 < q(x) � sup
Ω

q(x) < inf
Ω

p�(x) with p�(x) def=

⎧⎨
⎩

p(x)n
n− p(x)

if p(x) < n,

+∞ if p(x) � n,

(2.5)

then the embedding W 1,p(·)
0 (Ω) ↪→ Lq(·)(Ω) is continuous and compact.

Let us now define the variational problem under consideration. To this end, we
consider the functional Jε : W 1,pε(·)(Ω) → R ∪ {+∞},

Jε[u] def=

⎧⎪⎨
⎪⎩

∫
Ω

Fε(x, u,∇u) dx if u ∈ W 1,pε(·)(Ω),

+∞ otherwise,
(2.6)

where

Fε(x, u,∇u) def= κε(x)|∇u|pε(x) +
1

σ(x)
|u|σ(x) − gε(x)u with κε(x)

def=
Kε(x)
pε(x)

.

(2.7)
Here the function gε is defined by

gε(x) def= 1ε
f (x)g(x), g ∈ C(Ω). (2.8)

We denote by 1ε
k the characteristic function of the set Ωε

k, k = f,m. Function Kε

is a measurable function in Ω such that

(K1) there exists a real number k0 such that 0 < k0 � Kε(x) � k−1
0 in Ωε

f ;

(K2) for any ε > 0 there exists a real number kε such that supx∈Ωε
m
Kε(x) = kε > 0

and kε → 0 as ε → 0.

We consider the following variational problem:

Jε[uε] → min, uε ∈ W
1,pε(·)
0 (Ω). (2.9)

It is known from [5] that there exists a unique solution uε ∈ W
1,pε(·)
0 (Ω) for each

ε > 0 of the variational problem (2.9).
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We aim to study the asymptotic behaviour of the family {uε} as ε → 0, bearing
in mind that the geometry of Ω = Ωε

f ∪ Ω̄ε
m depends on ε. So we have to specify

this geometry. Most of the papers dealing with homogenization assume that Ω is a
periodic repetition of a standard cell. This classical periodicity assumption is sub-
stituted here by an abstract one covering a variety of concrete behaviours, including
periodicity and almost periodicity. We thus make the following assumptions:

(C1) the local concentration of the set Ωε
f has a positive continuous limit: that is,

the indicator of Ωε
f converges weakly in L2(Ω) to a continuous positive limit.

This implies that there exists a continuous positive function ρ = ρ(x) such
that

lim
h→0

lim
ε→0

h−n meas(Kx
h ∩Ωε

f ) = ρ(x)

for any open cube Kx
h centred at x ∈ Ω with lengths equal to h > 0;

(C2) for any {pε}(ε>0) ⊂ Pε
0, there is a constant Cpε � 0 such that, if the function

p�
ε is defined by p�

ε(x) = pε(x) − Cpε
in Ω, then

(i) the sequence {p�
ε}(ε>0) belongs to Pε

0, that is limε→0 Cpε = 0;

(ii) there exists a family of extension operators

P ε : W 1,p�
ε(·)(Ωε

f ) → W 1,p�
ε(·)(Ω)

such that, for any vε ∈ W 1,pε(·)(Ωε
f ),

P εvε = vε ∈ Ωε
f and ‖P εvε‖W 1,p�

ε(·)(Ω) � Φ(‖vε‖W 1,pε(·)(Ωε
f )),

where Φ = Φ(t) is a strictly monotone continuous function in R
+ such

that Φ(0) = 0 and Φ(t) → +∞ as t → +∞.

Remark 2.2. Condition (C2) in the case when pε = p ∈ R is well-known in the
mathematical literature (see, for example, [1, 3, 11,14,16]).

We also impose several conditions on the local characteristic of the set Ωε
f and

Ωε
m associated to the functional (2.6). Let Kz

h be an open cube centred at z ∈ Ω
with lengths equal to h, 0 < ε � h � 1. We introduce the following functionals.

• The functional cε,h
pε(·) associated to the energy in Ωε

f is defined in Ω × R
n by

cε,h
pε(·)(z;
a)

def= inf
vε

∫
Kz

h∩Ωε
f

(κε(x)|∇vε(x)|pε(x)

+ h−pε(x)−γ |vε(x) − (x− z,
a)|pε(x)) dx, (2.10)

for z ∈ Ω, 
a ∈ R
n, where γ is a given positive real number, and the infimum is

taken over vε ∈ W 1,pε(·)(Kz
h ∩Ωε

f ). The scalar product in R
n is denoted here

by (·, ·).
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• The functional bε,h
pε(·) associated to the energy exchange between the sets Ωε

f

and Ωε
m is defined in Ω × R

n by

bε,h
pε(·)(z;β) def= inf

wε

∫
Kz

h

(
κε(x)|∇wε|pε(x) +

1ε
m(x)
σ(x)

|wε|σ(x)

+ h−pε(x)−γ1ε
f (x)|wε − β|pε(x)

)
dx, (2.11)

for z ∈ Ω, β ∈ R, the infimum being taken over wε ∈ W 1,pε(·)(Kz
h).

We assume that the local characteristics of Ω are such that

(C3) for any x ∈ Ω and any 
a ∈ R
n, there is a continuous function A(x,
a) and a

real number γ = γ0, 0 < γ0 < p−, such that, for any {pε}(ε>0) ⊂ Pε
0,

lim
h→0

lim
ε→0

h−ncε,h
pε(·)(x,
a) = lim

h→0
lim
ε→0

h−ncε,h
pε(·)(x,
a) = A(x,
a); (2.12)

(C4) for any x ∈ Ω and any β ∈ R, there is a continuous function b(x, β) and a
real number γ = γ1, 0 < γ1 < p− such that, for any {pε}(ε>0) ⊂ Pε

0,

lim
h→0

lim
ε→0

h−nbε,h
pε(·)(x, β) = lim

h→0
lim
ε→0

h−nbε,h
pε(·)(x, β) = b(x, β). (2.13)

Remark 2.3. It is crucial in conditions (C3) and (C4) that the limit func-
tions A(x,
a) and b(x, β) do not depend on the particular choice of the sequence
{pε}(ε>0) ⊂ Pε

0. We prove in the last section of the present paper that these assump-
tions are fulfilled for periodic and locally periodic media.

Remark 2.4. Contrary to the standard growth setting as considered in [4,16], the
local characteristic bε,h

pε(·)(z;β) is not homogeneous with respect to the parameter
β. This induces the appearance of a nonlinear function b(x, u) in the homogenized
functional (see theorem 2.5, below).

The main result of the paper is the following theorem.

Theorem 2.5. Let uε be a solution of (2.9). Assume that conditions (A1)–(A5),
(K1)–(K2) and (C1)–(C.4) are satisfied. Then uε (the solution of the variational
problem (2.9)) converges strongly in Lp0(·)(Ωε

f ) to u, which is the solution of the
following variational problem:

Jhom[u] → min, u ∈ W
1,p0(·)
0 (Ω), (2.14)

the homogenized functional Jhom : W 1,p0(·)
0 (Ω) → R ∪ {+∞} being defined by

Jhom[u] def=

⎧⎪⎨
⎪⎩

∫
Ω

F0(x, u,∇u) dx if u ∈ W
1,p0(·)
0 (Ω),

+∞ otherwise,
(2.15)

where

F0(x, u,∇u) def= A(x,∇u) +
ρ(x)
σ(x)

|u|σ(x) + b(x, u) − g(x)ρ(x)u. (2.16)
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Moreover, for any smooth function ζ in Ω, we have

lim
ε→0

∫
Ωε

m

(
1

pε(x)
|uε|σ(x)−2(u(x)uε − |uε|2) +

1
σ(x)

|uε|σ(x)
)
ζ(x) dx

=
∫

Ω

b(x, u)ζ(x) dx. (2.17)

The paper is organized as follows. In the next section we prove that the homog-
enized problem is well-posed. The convergence process is rigorously studied in § 5
using auxiliary approximating results previously developed in § 4. Finally, in § 6, we
check that our assumptions are fulfilled by periodic (or quasi-periodic) geometries
and we explicitly compute the limit functional.

Notational convention. In what follows C,C1, C2, . . . are generic constants inde-
pendent of ε. When we deal with the cε,h

pε(·) functional we assume that γ = γ0 is
given by (C3). Likewise, when we deal with the bε,h

pε(·) functional we assume that
γ = γ1 is given by (C4).

3. Properties of the homogenized problem (2.14)

In this section we state the basic properties of the homogenized problem (2.14) and
check its well-posedness. First we study the functions A(x,
a) and b(x, β) defined by
conditions (C3) and (C4), respectively. Then, using their properties, we show the
continuity of the homogenized functional Jhom in the space W 1,p0(·)(Ω). Finally, we
prove that the homogenized problem (2.14) has a unique solution u ∈ W 1,p0(·)(Ω).

In what follows we make use of Hölder’s inequality for Sobolev spaces with vari-
able exponents. Let φ ∈ Lp(·)(Ω), ψ ∈ Lq(·)(Ω) with 1/p + 1/q = 1, 1 < p− �
p(x) � p+ < +∞ and 1 < q− � q(x) � q+ < +∞. Then∫

Ω

|φψ| dx � 2‖φ‖Lp(·)(Ω)‖ψ‖Lq(·)(Ω). (3.1)

We also recall the following result from the theory of Sobolev spaces with non-
standard growth. Let the function p satisfy the log-Hölder continuity property and
1 < p− � p(x) < +∞. Then

min(‖φ‖p−

Lp(·)(Ω), ‖φ‖p+

Lp(·)(Ω)) � Υp(·),Ω(φ) � max(‖φ‖p−

Lp(·)(Ω), ‖φ‖p+

Lp(·)(Ω)),

min(Υ 1/p−

p(·),Ω(φ), Υ 1/p+

p(·),Ω(φ)) � ‖φ‖Lp(·)(Ω) � max(Υ 1/p−

p(·),Ω(φ), Υ 1/p+

p(·),Ω(φ)).

⎫⎪⎬
⎪⎭ (3.2)

Properties of the function A(x,
a) are given in the following lemma.

Lemma 3.1. Under the assumptions of theorem 2.5 the function A has the following
properties:

(i) it is convex with respect to the variable 
a, i.e.

A(x,
aτ ) � τA(x,
a1) + (1 − τ)A(x,
a2) (3.3)

for any x ∈ Ω, 
a1 ∈ R
n, 
a2 ∈ R

n, τ ∈ [0, 1], where 
aτ = τ
a1 + (1 − τ)
a2;
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(ii) it admits the bound:

|A(x,
a)| � C|
a|p0(x) for any x ∈ Ω and 
a ∈ R
n; (3.4)

(iii) it is locally Lipschitz in the following sense:

|A(x,
a1) − A(x,
a2)| � C(1 + |
a1| + |
a2|)p0(x)−1|
a1 − 
a2| (3.5)

for any x ∈ Ω, 
a1 ∈ R
n, 
a2 ∈ R

n.

Proof of lemma 3.1. First, we prove lemma 3.1(i). Let vε
1, v

ε
2 and vε

1,2 be minimizers
of the functional in (2.10) with 
a = 
a1, 
a = 
a2 and 
aτ = τ
a1+(1−τ)
a2, respectively.
Let γ = γ0 be given by (C3). By the definition of vε

1,2, for any z ∈ Ω, we have

cε,h
pε(·)(z,
aτ ) =

∫
Kz

h∩Ωε
f

(κε(x)|∇vε
1,2|pε(x) + h−γ−pε(x)|vε

1,2 − (x− z,
aτ )|pε(x)) dx

�
∫

Kz
h∩Ωε

f

(κε(x)|∇vε
τ |pε(x) + h−γ−pε(x)|vε

τ − (x− z,
aτ )|pε(x)) dx,

(3.6)

where vε
τ = τvε

1 + (1 − τ)vε
2. It follows from (3.6) that

cε,h
pε(·)(z,
aτ ) � τcε,h

pε(·)(z,
a1) + (1 − τ)cε,h
pε(·)(z,
a2) for all z ∈ Ω. (3.7)

Lemma 3.1(i) immediately follows from (3.7) and condition (C3).
We turn to lemma 3.1(ii). Let z ∈ Ω and let vε be the minimizer of the functional

in (2.10). Taking wa(x) = (x − z,
a) as a test function in the integral in (2.10) we
obtain

cε,h
pε(·)(z,
a) �

∫
Kz

h∩Ωε
f

κε(x)|∇wa|pε(x) dx =
∫

Kz
h∩Ωε

f

κε(x)|
a|pε(x) dx.

This inequality, condition (K1) and (2.1) immediately imply that

cε,h
pε(·)(z,
a) � k−1

0

p−

∫
Kz

h∩Ωε
f

|
a|pε(x) dx.

We then write

cε,h
pε(·)(z,
a) � k−1

0

p−

∫
Kz

h∩Ωε
f

|
a|p0(x) dx+
k−1
0

p−

∫
Kz

h∩Ωε
f

(|
a|pε(x) − |
a|p0(x)) dx.

Using assumption (A3) we obtain

cε,h
pε(·)(z,
a) � k−1

0

p−

∫
Kz

h∩Ωε
f

|
a|p0(x) dx+ o(1) as ε → 0.

We infer from this inequality and assumption (A2) that, for sufficiently small ε and
any z ∈ Ω,

cε,h
pε(·)(z,
a) � Chn|
a|p0(z) + o(hn) as h → 0. (3.8)

Statement (ii) of Lemma 3.1 immediately follows from (3.8) and condition (C3).
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It remains to prove (iii). Let τ be defined by

τ
def=

|
a1 − 
a2|
1 + |
a1| + |
a2| . (3.9)

The result is obvious if 
a1 = 
a2. We thus assume that τ �= 0. Let z ∈ Ω. Consider
the functional cε,h

pε(·)(z,
a1). It can be represented as follows:

cε,h
pε(·)(z,
a1) = cε,h

pε(·)(z, (1 − τ)
a2 + τ(
a2 + τ−1(
a1 − 
a2))).

It therefore follows from the convexity result (3.7) that

cε,h
pε(·)(z,
a1) � (1 − τ)cε,h

pε(·)(z,
a2) + τcε,h
pε(·)(z,
a2 + τ−1(
a1 − 
a2)). (3.10)

We use (3.8) to estimate the second term of the right-hand side of (3.10). Bearing
in mind (3.9), for sufficiently small ε we have

τcε,h
pε(·)(z,
a2 + τ−1(
a1 − 
a2))

� Chn |
a1 − 
a2|
1 + |
a1| + |
a2| |
a2 + τ−1(
a1 − 
a2)|p0(z)

� C1h
n(1 + |
a1| + |
a2|)p0(z)−1|
a1 − 
a2| + o(hn) as h → 0. (3.11)

Because of (3.8), the term τcε,h
pε(·)(z,
a2) is also of order o(hn) as h → 0. Then, from

(3.9)–(3.11), for sufficiently small ε, we obtain

cε,h
pε(·)(z,
a1)− cε,h

pε(·)(z,
a2) � C2h
n(1+ |
a1|+ |
a2|)p0(z)−1|
a1 −
a2|+ o(hn) as h → 0.

(3.12)
In the same way, one checks that, for sufficiently small ε,

cε,h
pε(·)(z,
a1)−cε,h

pε(·)(z,
a2) � −C2h
n(1+|
a1|+|
a2|)p0(z)−1|
a1−
a2|+o(hn) as h → 0.

(3.13)
Statement (iii) of lemma 3.1 follows from (3.12), (3.13) and condition (C3). Hence,
lemma 3.1 is proved.

In a similar way we obtain the properties of the function b(x, β). Namely, the
following result holds.

Lemma 3.2. Under the assumptions of theorem 2.5, function b has the following
properties:

(i) it is convex with respect to the variable β, i.e.

b(x, βτ ) � τb(x, β1) + (1 − τ)b(x, β2) (3.14)

for any x ∈ Ω, (β1, β2) ∈ R
2, τ ∈ [0, 1], where βτ = τβ1 + (1 − τ)β2;

(ii) it satisfies the bound
|b(x, β)| � C|β|σ(x) (3.15)

for any x ∈ Ω and any β ∈ R;
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(iii) it is locally Lipschitz in the following sense:

|b(x, β1) − b(x, β2)| � C(1 + |β1| + |β2|)σ(x)−1|β1 − β2| (3.16)

for any x ∈ Ω, (β1, β2) ∈ R
2.

We now state the continuity of the homogenized functional Jhom in the space
W 1,p0(·)(Ω). Namely, we have the following result.

Lemma 3.3. Under the assumptions of theorem 2.5, for any (u, v) ∈ (W 1,p0(·)(Ω))2,
the functional Jhom satisfies

|Jhom[u] − Jhom[v]| � L‖u− v‖W 1,p0(·)(Ω), (3.17)

where
L = L(measΩ, p±

0 , σ
±, ‖u‖W 1,p0(·)(Ω), ‖v‖W 1,p0(·)(Ω)).

Proof of lemma 3.3. Let (u, v) ∈ (W 1,p0(·)(Ω))2. From the definition of the homog-
enized functional Jhom and regularity properties of functions p0, σ, ρ, g, we obtain

|Jhom[u] − Jhom[v]| � C

∫
Ω

(|A(x,∇u) − A(x,∇v)| + ||u|σ(x) − |v|σ(x)|
+ |b(x, u) − b(x, v)| + |u− v|) dx. (3.18)

We have to estimate the right-hand side of (3.18). For the first term, using (3.5),
we write∫

Ω

|A(x,∇u) − A(x,∇v)| dx � C

∫
Ω

(1 + |∇u| + |∇v|)p0(x)−1|∇u− ∇v| dx. (3.19)

To estimate the integral on the right-hand side of (3.19) we apply Hölder’s inequality
(3.1) and inequalities (3.2). We obtain∫

Ω

(1 + |∇u| + |∇v|)p0(x)−1|∇u− ∇v| dx � CL1‖∇u− ∇v‖Lp0(·)(Ω), (3.20)

where

L1 = max(Υ 1/q−
0

p0(·),Ω(1 + |∇u| + |∇v|), Υ 1/q+
0

p0(·),Ω(1 + |∇u| + |∇v|))

and 1/p0 + 1/q0 = 1 with 1 < q−
0 � q0(x) � q+0 . In a similar way we estimate the

second, third and fourth terms on the right-hand side of (3.18). We obtain the
desired inequality (3.17). Lemma 3.3 is proved.

We end this section with the existence result for the variational problem (2.14).

Lemma 3.4. Under the assumptions of theorem 2.5 there exists a unique solution
u ∈ W 1,p0(·)(Ω) of the variational problem (2.14).

Proof of lemma 3.4. The existence of the minimizer to the functional (2.15) is a
consequence of the proof of theorem 2.5 presented in § 5. The uniqueness of the
solution of the homogenized problem (2.14) immediately follows from the strict
convexity of the homogenized functional Jhom. Lemma 3.4 is proved.
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4. Auxiliary results

In this section we construct a convenient approximation for the solution of the varia-
tional problem (2.6) in the subdomains Ωε

m and Ωε
f . Of course, writing ‘convenient’,

we have in mind ‘convenient for the passage to the limit ε → 0’.
We use the following notation. Let {xα} be a periodic grid in Ω with a period

h′ = h− h1+γ/p+
, ε � h � 1, 0 < γ < p−. Let us cover the domain Ω by cubes

Kα
h of length h centred at xα. With this covering we associate a partition of unity

{ϕα}:

0 � ϕα(x) � 1, ϕα(x) = 0 for x �∈ Kα
h ,

ϕα(x) = 1 for x ∈ Kα
h \

⋃
β �=α

Kβ
h ,

∑
α

ϕα(x) = 1, |∇ϕα(x)| � Ch−1−γ/p+
for x ∈ Ω.

We also denote by Kα
h′ the cube of length h′ centred at the point xα and we set

Πα
h = Kα

h \Kα
h′ .

We begin with the following result of approximation in Ωε
m.

Lemma 4.1. Assume that the conditions of theorem 2.5 are satisfied. Then, for each
h > 0, there exist a set Bε,h ⊂ Ωε

f and a function Y ε,h ∈ W 1,pε(·)(Ω) such that

(i) 0 � Y ε,h(x) � 1 in Ω and Y ε,h(x) = 1 in Ωε
f \ Bε,h;

(ii) limε→0 meas Bε,h = O(hγ/(p++1)) as h → 0;

(iii) for any function w ∈ C1
0 (Ω), we have, as h → 0,

lim
ε→0

∫
Ω

(
κε(x)|w∇Y ε,h|pε(x) +

1
σ(x)

|wY ε,h|σ(x)
)

dx

�
∫

Ω

(
b(x,w) +

ρ(x)
σ(x)

|w|σ(x)
)

dx+ o(1). (4.1)

Proof of lemma 4.1. Let wε,h
α be a minimizer of the functional in (2.11) with z = xα

and β = βα = w(xα). It follows from condition (C4) that

lim
ε→0

∫
Kα

h

(
κε(x)|∇wε,h

α |pε(x) +
1ε

m(x)
σ(x)

|wε,h
α |σ(x)

)
dx = O(hn) as h → 0, (4.2)

lim
ε→0

∫
Kα

h ∩Ωε
f

h−pε(x)|wε,h
α − βα|pε(x) dx = O(hn+γ) as h → 0. (4.3)

Furthermore, due to conditions (A1) and (C4),

lim
ε→0

∫
Πα

h

(
κε(x)|∇wε,h

α |pε(x) +
1ε

m(x)
σ(x)

|wε,h
α |σ(x)

)
dx = o(hn) as h → 0, (4.4)

lim
ε→0

∫
Πα

h ∩Ωε
f

h−pε(x)|wε,h
α − βα|pε(x) dx = o(hn+γ) as h → 0. (4.5)



506 C. Choquet

Moreover, the minimizer wε,h
α of functional (2.11) is bounded. Namely,

|wε,h
α | � |βα| in Kα

h . (4.6)

Now, for any cube Kα
h we introduce the set

Bε,h
α

def= {x ∈ Kα
h : |wε,h

α (x) − βα1ε
f (x)| � hp−/p++γ/(p++1)} (4.7)

and the function

ŵε,h
α (x) def=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 in Kα
h ∩ (Ωε

f \ Bε,h
α ),

wε,h
α − hp−/p++γ/(p++1)

βα − 2hp−/p++γ/(p++1) in Bε,h
α ,

0 in Kα
h ∩ (Ωε

m \ Bε,h
α ).

(4.8)

Note that in the non-trivial case βα �= 0, we can choose sufficiently small h to ensure
that βα − 2hp−/p++γ/(p++1) �= 0. Then we set

B̂ε,h
α

def= Bε,h
α ∩Ωε

f . (4.9)

It follows from condition (C4) and (4.7) that

lim
ε→0

meas B̂ε,h
α = O(hn+γ/(p++1)). (4.10)

Indeed, we have the following relation:

O(hn) =
∫

Kz
h

(
κε(x)|∇wε,h

α |pε(x) +
1ε

m(x)
σ(x)

|wε,h
α |σ(x)

+ h−pε(x)−γ1ε
f (x)|wε,h

α − β|pε(x)
)

dx

� h−p−−γ

∫
B̂ε,h

α

|wε,h
α − β|pε(x) dx

� h−p−−γ

∫
B̂ε,h

α

(hp−/p++γ/(p++1))pε(x) dx

� h−p−−γhp−+γp+/(p++1) meas B̂ε,h
α

= h−(γ/(p++1)) meas B̂ε,h
α .

It also follows from definition (4.8) that

0 � ŵε,h
α (x) � 1 in Kα

h . (4.11)

Moreover, we note that condition (C4) implies

lim
ε→0

∫
Kz

h

(
κε(x)|βα∇ŵε,h

α |pε(x) +
1ε

m(x)
σ(x)

|βαŵ
ε,h
α |σ(x)

+ h−pε(x)−γ1ε
f (x)|βαŵ

ε,h
α − β|pε(x)

)
dx � hnb(xα, βα) + o(hn)

(4.12)
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as h → 0. Now we are in a position to define the desired set Bε,h and the function
Y ε,h. We set

Bε,h def=
⋃
α

B̂ε,h
α and Y ε,h(x) def=

∑
α

ŵε,h
α (x)ϕα(x). (4.13)

Assertion (i) of the lemma immediately follows from (4.11) and definition (4.13).
Assertion (ii) follows from estimate (4.10) and definition (4.13). Finally, using con-
ditions (C1), (C4), estimates (4.2)–(4.5), the definition of the function ŵε,h

α and
estimate (4.12), we prove assertion (iii). Lemma 4.1 is proved.

The second step of the approximation process is the following lemma.

Lemma 4.2. Let the conditions of theorem 2.5 be satisfied and let Bε,h be the set
defined in lemma 4.1. Let w ∈ C1

0 (Ω). Then there are a set Dε,h ⊂ Ω and a function
V ε,h = V ε,h(·, w) ∈ W 1,pε(·)(Ω) such that

(i) Bε,h ⊂ Dε,h and limε→0 meas Dε,h = o(1) as h → 0,

(ii) maxx∈Ω |V ε,h(x) − w(x)| � Ch,

(iii) the following relations hold true:

lim
ε→0

∫
Dε,h∪Ωε

m

κε(x)|∇V ε,h|pε(x) dx = o(1) as h → 0, (4.14)

lim
ε→0

∫
Ωε

f

κε(x)|∇V ε,h|pε(x) dx �
∫

Ω

A(x,∇w) dx+ o(1) as h → 0. (4.15)

Proof of lemma 4.2. Let {p̃ε}(ε>0) be a sequence of Pε
0 such that, for any x ∈ Ω,

p̃ε(x) − Cp̃ε
� pε(x), where Cp̃ε

is the constant defined in condition (C2). Due to
condition (C2), there exists a family of extension operators P ε : W 1,pε(·)(Ωε

f ) →
W 1,p̃ε(·)(Ω) such that P εvε = vε in Ωε

f and ‖P εvε‖W 1,pε(·)(Ω) � C‖vε‖W 1,p̃ε(·)(Ωε
f )

for any vε ∈ W 1,p̃ε(·)(Ωε
f ).

Let vε,h
α be a minimizer of the functional

cε,h
p̃ε(·)(x

α,
a)

= inf
vε

∫
Kα

h ∩Ωε
f

(
Kε(x)
p̃ε(x)

|∇vε|p̃ε(x) + h−p̃ε(x)−γ |vε − (x− xα,
aα)|p̃ε(x)
)

dx,

(4.16)

where γ > 0, the infimum is taken over vε ∈ W 1,p̃ε(·)(Kα
h ∩Ωε

f ) and 
aα = ∇w(xα).
It follows from condition (C3) that∫

Kα
h ∩Ωε

f

Kε(x)
p̃ε(x)

|∇vε,h
α |p̃ε(x) dx = O(hn) as h → 0, (4.17)

∫
Kα

h ∩Ωε
f

h−p̃ε(x)|vε,h
α − (x− xα,
aα)|p̃ε(x) dx = O(hn+γ) as h → 0, (4.18)
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h ∩Ωε
f

Kε(x)
p̃ε(x)

|∇vε,h
α |p̃ε(x) dx = o(hn) as h → 0, (4.19)

∫
Πα

h ∩Ωε
f

h−p̃ε(x)|vε,h
α − (x− xα,
aα)|p̃ε(x) dx = o(hn+γ) as h → 0. (4.20)

Since vε,h
α is a minimizer of (4.16), then we have

max
Kα

h ∩Ωε
f

|vε,h
α (x)| � h. (4.21)

Let us now introduce the function W ε,h = W ε,h(x) defined by

W ε,h(x) = w(x) +
∑
α

(vε,h
α (x) − (x− xα,
aα))ϕα(x) for all x ∈ Ω. (4.22)

The functionW ε,h is constructed such that it belongs toW 1,p̃ε(·)(Ωε
f ) and it satisfies

the bound:
max
x∈Ωε

f

|W ε,h(x) − w(x)| � Ch. (4.23)

In addition, using estimates (4.17)–(4.20) and bearing in mind that w ∈ C1
0 (Ω), we

obtain

lim
ε→0

∫
Ωε

f

Kε(x)
p̃ε(x)

|∇W ε,h|p̃ε(x) dx �
∫

Ω

A(x,∇w) dx+ o(1) as h → 0. (4.24)

Setting
Uε,h = W ε,h − w, (4.25)

we infer from (4.23) and (4.24) that

max
x∈Ωε

f

|Uε,h(x)| � Ch and ‖Uε,h‖W 1,p̃ε(·)(Ωε
f ) � C. (4.26)

Now, using the extension operator defined in the first lines of the present proof,
we claim that there exists a function U ε,h ∈ W 1,pε(·)(Ω) such that

U ε,h(x) = Uε,h(x) in Ωε
f , max

x∈Ω
|U ε,h(x)| � Ch and ‖U ε,h‖W 1,pε(·)(Ω) � C.

(4.27)
We also recall that the set Bε,h defined in lemma 4.1 satisfies

lim
ε→0

meas Bε,h = O(hγ/(p++1)) as h → 0.

Thus, following the ideas of the proof of [14, lemma 4.4, ch. 4], we assert that there
exist a set Dε,h and a function Û ε,h such that Û ε,h = U ε,h in Ω \ Dε,h, satisfying
the following properties:

max
x∈Ω

|Û ε,h(x)| � Ch, (4.28)

‖Û ε,h‖W 1,pε(·)(Ω) � C, (4.29)

Bε,h ⊂ Dε,h and lim
ε→0

meas Dε,h = o(1) as h → 0, (4.30)

‖Û ε,h‖W 1,pε(·)(Dε,h) → 0 as h → 0. (4.31)
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Finally, we define the function V ε,h by

V ε,h = w + Û ε,h in Ω. (4.32)

Let us show that the function V ε,h and the set Dε,h satisfy all the assertions of
the lemma. Assertion (i) immediately follows from (4.30), while assertion (ii) is a
consequence of the definition of the function V ε,h and (4.28). It remains to prove
assertion (iii). Relation (4.14) immediately follows from the definitions of the func-
tions Kε and V ε,h and equations (4.30) and (4.31). Let us prove inequality (4.15).
We write∫

Ωε
f

κε(x)|∇V ε,h|pε(x) dx

=
∫

Ωε
f \Dε,h

κε(x)|∇V ε,h|pε(x) dx+
∫

Dε,h

κε(x)|∇V ε,h|pε(x) dx (4.33)

=
∫

Ωε
f \Dε,h

κε(x)|∇W ε,h|pε(x) dx+
∫

Dε,h

κε(x)|∇V ε,h|pε(x) dx. (4.34)

The second term on the right-hand side of (4.34) is o(1) as h → 0 because of (4.30),
(4.31) and definition (4.32). Consider the first term on the right-hand side of (4.34).
It can be estimated as follows:∫

Ωε
f \Dε,h

κε(x)|∇W ε,h|pε(x) dx �
∫

Ωε
f

Kε(x)
p̃ε(x)

|∇W ε,h|p̃ε(x) dx+ Iε,h,

where

Iε,h =
∫

Ωε
f \Dε,h

Kε(x)
(

1
pε(x)

|∇W ε,h|pε(x) − 1
p̃ε(x)

|∇W ε,h|p̃ε(x)
)

dx. (4.35)

Because {pε}(ε>0) ⊂ Pε
0 and {p̃ε}(ε>0) ⊂ Pε

0, we note that p̃ε − pε converges
uniformly to zero in C(Ω̄). We therefore have

Iε,h � k−1
0

∫
(Ωε

f \Dε,h)∩Θε,h
V

(
1

pε(x)
|∇W ε,h|pε(x) − 1

p̃ε(x)
|∇W ε,h|p̃ε(x)

)
dx → 0

as ε → 0, (4.36)

where

Θε,h
V =

{
x ∈ Ω : |∇W ε,h(x)| <

(
p̃ε(x)
pε(x)

)1/(p̃ε(x)−pε(x))}
.

Now inequality (4.15) follows from (4.24), (4.34)–(4.36) and (4.14). Lemma 4.2 is
proved.

We now use the following notation. Let {p�
ε}(ε>0) ⊂ Pε

0 be the sequence of func-
tions defined in condition (C2). We consider the sequence {π�

ε}(ε>0) ⊂ Pε
0 defined

by
π�

ε (x) = min{p�
ε(x), p0(x)}, x ∈ Ω. (4.37)
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It is clear that {π�
ε}(ε>0) ⊂ Pε

0 and, moreover, that

π�
ε (x) � p�

ε(x) � pε(x) and π�
ε (x) � p0(x) in Ω.

The next lemma gives an auxiliary result which will be used in the proof of the
lower bound (see § 5.2 below).

Lemma 4.3. Let the conditions of theorem 2.5 be satisfied. Assume that a sequence
{uε}(ε>0) ⊂ W

1,p�
ε(·)

0 (Ω) converges to a function u ∈ C1
0 (Ω) in Lp0(·)(Ωε

f ) and,
moreover, that ∫

Ω

(
1ε

f (x)κε(x)|∇uε|pε(x) +
1

σ(x)
|uε|σ(x)

)
dx � C. (4.38)

Then there exist a set Gε ⊂ Ω with Ωε
m ⊂ Gε, a function ûε and a subsequence

εk → 0 (still denoted by ε for convenience) such that

(i) limε→0 meas Gε
f = 0, where Gε

f = Gε ∩Ωε
f ,

(ii) ûε = uε in Ωε
f \ Gε

f and, moreover,

lim
ε→0

‖ûε‖W 1,π�
ε (·)(Gε

f ) = 0, (4.39)

(iii) the following inequality holds true:

lim
ε→0

∫
Gε

(
κε(x)|∇uε|π�

ε (x) +
1ε

m(x)
σ(x)

|uε|σ(x)
)

dx �
∫

Ω

b(x, u) dx. (4.40)

Proof of lemma 4.3. Let uε
f be the restriction of the function uε to the domain Ωε

f .
Due to condition (C2), the function P εuε

f = Uε
f ∈ W 1,p�

ε(·)(Ω) satisfies in particular

‖Uε
f ‖W 1,π�

ε (·)(Ω) � C, (4.41)

because the function π�
ε defined in (4.37) is such that π�

ε � p�
ε in Ω.

Since {uε}(ε>0) strongly converges to the function u in the space Lp0(·)(Ωε
f ),

there exists a set Gε such that measGε → 0 as ε → 0 and the sequence {uε}(ε>0)
converges to u uniformly in the domain Ωε

f \Gε and

sup
Ωε

f \Gε

|Uε
f − u| = �ε with �ε → 0 as ε → 0. (4.42)

We set
Gε

f = Gε ∩Ωε
f .

Following the ideas of the proof of [14, lemma 4.4, ch. 4], we show that there exist
a set Ĝε

f and a function ûε ∈ W
1,π�

ε (·)
0 (Ω) such that Gε

f ⊂ Ĝε
f , ûε = uε in Ωε

f \ Ĝε
f ,

lim
ε→0

meas Ĝε
f = 0 and lim

ε→0
‖ûε‖W 1,π�

ε (·)(Ĝε
f ) = 0. (4.43)

Now we set
Gε = Ωε

m ∪ Ĝε
f and Gε

f = Gε ∩Ωε
f . (4.44)
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The sets Gε, Gε
f and the function ûε satisfy lemma 4.3(i) and (ii). Assertion (iii)

remains to be proved. To this end, let us introduce the function

Ûε(x) =

⎧⎪⎪⎨
⎪⎪⎩
ûε(x) if |ûε(x) − u(x)| � �ε,

u(x) + �ε if ûε(x) > u(x) + �ε,

u(x) − �ε if ûε(x) < u(x) − �ε.

(4.45)

The function Ûε belongs to W 1,π�
ε (·)(Ω) and

|Ûε(x) − u(x)| � �ε with �ε → 0 as ε → 0, x ∈ Ω. (4.46)

We set
Uε = uε − Ûε (4.47)

and consider the functional

Iε[uε] def=
∫

Gε

(
κε(x)|∇uε|π�

ε (x) +
1ε

m(x)
σ(x)

|uε|σ(x)
)

dx. (4.48)

Since Gε = Ωε
m ∪ Gε

f and Uε(x) = 0 in Ωε
f \ Gε

f , we have

Iε[uε]

=
( ∫

Ωε
f

κε(x)|∇Uε|π�
ε (x) dx+

∫
Ωε

m

(
κε(x)|∇uε|π�

ε (x) +
1ε

m(x)
σ(x)

|uε|σ(x)
)

dx
)

+
( ∫

Gε
f

κε(x)|∇uε|π�
ε (x) dx−

∫
Gε

f

κε(x)|∇Uε|π�
ε (x) dx

)

=
( ∫

Ωε
f

κε(x)|∇Uε|π�
ε (x) dx+

∫
Ωε

m

(
κε(x)|∇uε|π�

ε (x) +
1ε

m(x)
σ(x)

|uε|σ(x)
)

dx
)

+
( ∫

Gε
f

κε(x)|∇uε|π�
ε (x) dx−

∫
Gε

f

κε(x)|∇(uε − Ûε)|π�
ε (x) dx

)

def= iε
1 + iε

2. (4.49)

Consider the first term on the right-hand side of (4.49). First, for any ξ > 0 we define
the set Ωζ ⊂ Ω by Ωζ = {x ∈ Ω : |u(x)| > 2ζ}. Let us cover Ωζ with cubes Kα,ξ

h

of length h centred at xα. Because of (4.46), for ε and sufficiently small h we have
|Ûε| > ζ in Kα,ξ

h . Following the lines of the proof of [4, (6.29)], for x ∈ Ωε
f ∩Kα,ξ

h

we have

(1 +A1h
p+/(p+−1))κε(x)|∇Uε|π�

ε (x)

� κε(x)|Ûε|π�
ε (x)

∣∣∣∣∇
(
uε

Ûε

)∣∣∣∣
π�

ε (x)

− k−1
0 A2

(
1 +

1
hp+

)
|Uε(x)| |∇Û

ε|π�
ε (x)

|Ûε|π�
ε (x)

, (4.50)
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where A1 and A2 are positive constants independent of ε, δ and M . In a similar
way, for x ∈ Ωε

m ∩Kα,ξ
h we have

(1 +A1h
p+/(p+−1))κε(x)|∇uε|π�

ε (x)

� κε(x)|Ûε|π�
ε (x)

∣∣∣∣∇
(
uε

Ûε

)∣∣∣∣
π�

ε (x)

− kεA2

(
1 +

1
hp+

)
|uε|π�

ε (x) |∇Ûε|π�
ε (x)

|Ûε|π�
ε (x)

, (4.51)

where kε is defined in condition (K2). Now we make use of the strong convergence
of the sequence {uε}(ε>0) to the function u in the space Lp0(·)(Ωε

f ) and of the
definition of the function Ûε. Let

wε
α

def= u(xα)
uε

Ûε
.

Then, for any Kα,ξ
h , we infer from (4.50) and (4.51) that

lim
ε→0

( ∫
Kα,ξ

h ∩Ωε
f

κε(x)|∇Uε|π�
ε (x) dx

+
∫

Kα,ξ
h ∩Ωε

m

(
κε(x)|∇uε|π�

ε (x) +
1ε

m(x)
σ(x)

|uε|σ(x)
)

dx
)

� lim
ε→0

∫
Kα,ξ

h

(
κε(x)|∇wε

α|π�
ε (x) +

1ε
m(x)
σ(x)

|wε
α|σ(x)

)
dx

+ o(hn) as h → 0. (4.52)

Condition (C4) implies that

lim
ε→0

∫
Kα,ξ

h

(
κε(x)|∇wε

α|π�
ε (x) +

1ε
m(x)
σ(x)

|wε
α|σ(x)

)
dx

� hnb(x, u(xα)) + o(hn) as h → 0. (4.53)

Now it follows from (4.52) and (4.53) that

lim
ε→0

iε
1 �

∫
Ωζ

b(x, u) dx. (4.54)

Taking into account the definition of Ωζ and passing to the limit as ζ → 0 in (4.54),
we obtain

lim
ε→0

iε
1 �

∫
Ω

b(x, u) dx. (4.55)

Let us now estimate from below the term iε
2 in (4.49). We argue as follows. Using

the definition (4.45) of the function Ûε, we obtain

|iε
2| � C

∣∣∣∣
∫

Gε
f

(|∇uε|π�
ε (x) − |∇(uε − Ûε)|π�

ε (x)) dx
∣∣∣∣

= C

∣∣∣∣
∫

Gε
f

(|∇uε|π�
ε (x) − |∇(uε − u)|π�

ε (x)) dx
∣∣∣∣
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� C

∫
Gε

f

|∇u|(|∇uε|π�
ε (x)−1 + |∇u|π�

ε (x)−1) dx.

Since u is a smooth function in Ω we conclude that

|iε
2| � C

∫
Gε

f

(1 + |∇uε|π�
ε (x)−1) dx. (4.56)

It is now easy to see that (4.38), the estimate for the measure of the set Gε
f (see

(4.43) and (4.44)) and Hölder’s inequality yields

lim
ε→0

|iε
2| = 0. (4.57)

Now assertion (iii) of the lemma immediately follows from (4.55) and (4.57). Lemma
4.3 is proved.

5. Proof of theorem 2.5

We begin this section by obtaining a priori estimates for the minimizer uε of prob-
lem (2.9). Since Jε[uε] � Jε[0] ≡ 0, by virtue of the regularity properties of κε, σ,
gε, (3.2) and Young’s inequality, we can show that

‖uε‖W 1,pε(·)(Ωε
f ) � C. (5.1)

It follows from (C2) that there is a function uε = P εuε such that uε = uε in Ωε
f

and
‖uε‖W 1,p�

ε(·)(Ω) � C. (5.2)

Moreover, the definition of the function pε which converges uniformly to p0 implies
that there exists a parameter ς that does not depend on ε and such that

‖uε‖W 1,p0(·)−ς(Ω) � C (5.3)

and the family {uε}(ε>0) is a compact set in the space Lp0(·)(Ω). We can then extract
a subsequence (still denoted by {uε}) which converges to a function u ∈ Lp0(·)(Ω).
In particular,

uε → u in Lp0(·)(Ωε
f ). (5.4)

Let us show that u is the solution of the homogenized problem (2.14). The proof
will be done in three steps. In § 5.1 we prove that

lim Jε[uε] � Jhom[w] for any w ∈ W 1,p0(·)(Ω).

Section 5.2 is devoted to the proof of the inequality

limJε[uε] � Jhom[u].

It follows that u is the minimizer of functional Jhom in W
1,p0(·)
0 (Ω). We conclude

by studying the convergence in the matrix part Ωε
m. Indeed, we prove the weak

convergence of

1ε
m

(
1
pε

|uε|σ(·)−2(uuε − |uε|2) +
1
σ

|uε|σ(·)
)

to b(·, u) in § 5.3.
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5.1. Step 1: upper bound

The aim of this section is to prove that

lim Jε[uε] � Jhom[w]

for any w ∈ W 1,p0(·)(Ω). We first state the result for an arbitrary function w ∈
C1

0 (Ω). Let Y ε,h, V ε,h and Dε,h be the corresponding functions and set defined in
lemmas 4.1 and 4.2. We define the function T ε,h ∈ W 1,pε(·)(Ω) by

T ε,h(x) def= Y ε,h(x)V ε,h(x), x ∈ Ω. (5.5)

We first prove that
lim
h→0

lim
ε→0

Jε[T ε,h] � Jhom[w], (5.6)

where we recall for the convenience of the reader that

Jε[T ε,h] =
∫

Ω

(
κε(x)|∇T ε,h|pε(x) +

1
σ(x)

|T ε,h|σ(x) − gε(x)T ε,h

)
dx, (5.7)

Jhom[w] =
∫

Ω

(
A(x,∇w) +

ρ(x)
σ(x)

|w|σ(x) + b(x,w) − g(x)ρ(x)w
)

dx. (5.8)

Consider the third term in (5.7). It follows from condition (C1), the definition
(2.8) of the function gε, assertions (i) and (ii) of lemma 4.1 and assertion (ii) of
lemma 4.2 that

lim
h→0

lim
ε→0

∫
Ω

gε(x)T ε,h(x) dx =
∫

Ω

g(x)ρ(x)w(x) dx. (5.9)

Consider the second term in (5.7). We write it as follows:∫
Ω

1
σ

|T ε,h|σ =
∫

Ω

1
σ

|Y ε,h|σ|w|σ dx+
∫

Ω

1
σ

|Y ε,h|σ(|V ε,h|σ − |w|σ) dx.

It follows from assertion lemma 4.1(i) and lemma 4.2(i) that

lim
h→0

lim
ε→0

∫
Ω

1
σ(x)

|Y ε,h|σ(x)||V ε,h|σ(x) − |w|σ(x)| dx = 0.

We thus write∫
Ω

1
σ

|T ε,h|σ =
∫

Ω

1
σ

|Y ε,h|σ|w|σ dx+ jε,h
1 with lim

h→0
lim
ε→0

|jε,h
1 | = 0. (5.10)

Using Ω = (Ωε
f \ Dε,h) ∪ (Dε,h ∩Ωε

f ) ∪Ωε
m, we rewrite the first term in (5.7) as

follows:∫
Ω

κε(x)|∇T ε,h|pε(x) dx

=
∫

Ωε
f \Dε,h

κε(x)|∇V ε,h|pε(x) dx+
∫

Dε,h∩Ωε
f

κε(x)|∇T ε,h|pε(x) dx

+
∫

Ωε
m

κε(x)|∇T ε,h|pε(x) dx. (5.11)
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Because of inequality (4.15), the first term on the right-hand side of (5.11) is such
that

lim
h→0

lim
ε→0

∫
Ωε

f \Dε,h

κε(x)|∇V ε,h|pε(x) dx �
∫

Ω

A(x,∇w) dx. (5.12)

Consider the second term on the right-hand side of (5.11). Using

|∇T ε,h|pε(x) = |V ε,h∇Y ε,h|pε(x) + (|∇T ε,h|pε(x) − |V ε,h∇Y ε,h|pε(x)),

we rewrite it as follows:∫
Dε,h

κε(x)|∇T ε,h|pε(x) dx =
∫

Dε,h

κε(x)|∇Y ε,h|pε(x)(|V ε,h|pε(x) − |w(x)|pε(x)) dx

+
∫

Dε,h

κε(x)(|∇T ε,h|pε(x) − |V ε,h∇Y ε,h|pε(x)) dx

+
∫

Dε,h

κε(x)|w(x)∇Y ε,h|pε(x) dx. (5.13)

We now study the first term on the right-hand side of (5.13). It follows from
lemma 4.1(iii), lemma 4.2(ii), Hölder’s inequality and (3.2) that

lim
h→0

lim
ε→0

∫
Dε,h

κε(x)|∇Y ε,h|pε(x)||V ε,h|pε(x) − |w(x)|pε(x)| dx = 0. (5.14)

In a similar way, for the second term on the right-hand side of (5.13), from lem-
mas 4.1, and 4.2(ii), Hölder’s inequality and (3.2) we obtain

lim
h→0

lim
ε→0

∫
Dε,h

κε(x)||∇T ε,h|pε(x) − |V ε,h∇Y ε,h|pε(x)| dx = 0. (5.15)

Using the same decomposition of |∇T ε,h|pε(x) as in (5.13), we write the third term
on the right-hand side of (5.11) as follows:∫

Ωε
m

κε(x)|∇T ε,h|pε(x) dx =
∫

Ωε
m

κε(x)|∇Y ε,h|pε(x)(|V ε,h|pε(x) − |w(x)|pε(x)) dx

+
∫

Ωε
m

κε(x)(|∇T ε,h|pε(x) − |V ε,h∇Y ε,h|pε(x)) dx

+
∫

Ωε
m

κε(x)|w(x)∇Y ε,h|pε(x) dx. (5.16)

Using similar arguments to the ones used in the proof of bounds (5.14) and (5.15),
we obtain

lim
h→0

lim
ε→0

∫
Ωε

m

κε(x)|∇Y ε,h|pε(x)||V ε,h|pε(x) − |w(x)|pε(x)| dx = 0, (5.17)

lim
h→0

lim
ε→0

∫
Ωε

m

κε(x)||∇T ε,h|pε(x) − |V ε,h∇Y ε,h|pε(x)| dx = 0. (5.18)
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Finally, it follows from (5.11)–(5.18) that the first term in (5.7) satisfies∫
Ω

κε(x)|∇T ε,h|pε(x) dx �
∫

Ω

A(x,∇w) dx+
∫

Ω

κε(x)|w(x)∇Y ε,h|pε(x) dx+ jε,h
2 ,

(5.19)
where limh→0 limε→0 |jε,h

2 | = 0.
Now inequality (5.6) immediately follows from (5.9), (5.10), (5.19) and assertion

(iii) of lemma 4.1. Since uε minimizes the functional Jε, it follows from (5.6) that

lim
ε→0

Jε[uε] � Jhom[w] (5.20)

for any smooth function w. By density arguments, (5.20) holds for any function
w ∈ W

1,p0(·)
0 (Ω) as well.

5.2. Step 2: lower bound

The derivation of the lower bound

lim Jε[uε] � Jhom[u]

is done in two main steps. In the first step we introduce an auxiliary functional Jε
π

and obtain the lower bound for this functional. In the second step we obtain the
desired result for the initial functional Jε.

Step 1 (an auxiliary inequality). Let {π�
ε}(ε>0) be the sequence of functions

defined in (4.37). On the space W 1,π�
ε (·)(Ωε) we define the functional

Jπ�
ε : W 1,π�

ε (·)(Ωε) → R ∪ {+∞}
by setting

Jπ�
ε [u] def=

⎧⎪⎨
⎪⎩

∫
Ω

(κε(x)|∇u|π�
ε (x) +

1
σ(x)

|u|σ(x) − gε(x)u) dx if u ∈ W 1,π�
ε (·)(Ω),

+∞ otherwise.
(5.21)

The functional Jπ�
ε is continuous in W 1,π�

ε (·)(Ωε) and the following inequality holds:

|Jπ�
ε [u] − Jπ�

ε [v]| � CL2‖u− v‖W 1,π�
ε (·)(Ω)

for any (u, v) ∈ (W 1,p0(·)(Ω))2, where

L2 = max(Υ 1/q−
0

p0(·),Ω(1 + |u| + |∇u| + |v| + |∇v|), Υ 1/q+
0

p0(·),Ω(1 + |u| + |∇u| + |v| + |∇v|)),

with the exponent q0 = q0(x) and the values q±
0 being defined after (3.20).

Now let u be an arbitrary C1
0 (Ω) function and let {uε}(ε>0) be a sequence which

converges to the function u strongly in Lp0(·)(Ωε
f ) and such that Jπ�

ε [uε] � C. We
will show that

lim
ε→0

Jπ�
ε [uε] � Jhom[u]. (5.22)

We consider a new set of points {xα} in the domain Ω that form a h-periodic
space lattice. Let us cover the domain Ω by the cubes Kα

h with non-intersecting
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interiors. We introduce the following notation:

Ωh =
{⋃

α

Kα
h , K

α
h ⊂ Ω

}
, Ω̃h = Ω \Ωh,

Ωε
h = Ωε ∩Ωh, Ω̃ε

h = Ωε ∩ Ω̃h.

By construction,

meas Ω̃h = O(h) as h → 0. (5.23)

The functional Jπ�
ε [uε] is then decomposed as follows.

Jπ�
ε [uε] =

∫
Ω̃ε

h

Fπ�
ε
(x, uε,∇uε) dx+

∫
Ωε

h

Fπ�
ε
(x, uε,∇uε) dx, (5.24)

where

Fπ�
ε
(x, u,∇u) = κε(x)|∇u|π�

ε (x) +
1

σ(x)
|u|σ(x) − gε(x)u. (5.25)

Consider the first term on the right-hand side of (5.24). It follows from the definition
of gε, from the strong convergence of the sequence {uε}(ε>0) to u ∈ C1

0 (Ω) in the
space Lp0(·)(Ωε

f ) and from (5.23) that

lim
h→0

lim
ε→0

∫
Ω̃ε

h

Fπ�
ε
(x, uε,∇uε) dx � 0. (5.26)

Consider now the second term on the right-hand side of (5.24). We have

∫
Ωε

h

Fπ�
ε
(x, uε,∇uε) dx

=
∑

Kα
h ⊂Ω

∫
Kα

h ∩Ωε

(
κε(x)|∇uε|π�

ε (x) +
1

σ(x)
|uε|σ(x) − gε(x)uε

)
dx. (5.27)

For any α such that Kα
h ⊂ Ω, the first term on the right-hand side of (5.27) is

∫
Kα

h ∩Ωε

Fπ�
ε
(x, uε,∇uε) dx =

∫
Kα

h ∩Ωε
f

Fπ�
ε
(x, uε,∇uε) dx

+
∫

Kα
h ∩Ωε

m

Fπ�
ε
(x, uε,∇uε) dx. (5.28)

We now apply lemma 4.3 to the sequence {uε}(ε>0) and the function u. So, there
exist an open set Gε ⊂ Ω, such that Ωε

m ⊂ Gε and a function ûε that satisfy
lemma 4.3(i)–(iii). We define the function vε in Ω by

vε = ûε − u(xα). (5.29)
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We aim to go back to the functional cε,h
π�

ε (·). Bearing in mind condition (A3), we note
that, as ε → 0, we have∫

Kα
h ∩Ωε

f

κε(x)|∇vε|π�
ε (x) dx

=
∫

Kα
h ∩Ωε

f

Kε(x)
π�

ε (x)
|∇vε|π�

ε (x) dx+ o(1)

=
∫

Kα
h ∩Ωε

f

(
Kε(x)
π�

ε (x)
|∇vε|π�

ε (x) + h−γ−π�
ε (x)|vε − (x− xα,
a)|π�

ε (x)
)

dx

− h−γ

∫
Kα

h ∩Ωε
f

h−π�
ε (x)|vε − (x− xα,
a)|π�

ε (x) dx+ o(1), (5.30)

where the parameter 
a will be specified later. We now study the second term on
the right-hand side of (5.30). It follows from the regularity of the function u and
from assumptions (A1) and (A3) that, for any 
a ∈ R

n and any ε > 0, we have∫
Kα

h ∩Ωε
f

h−π�
ε (x)|vε − (x− xα,
a)|π�

ε (x) dx

=
∫

Kα
h ∩Ωε

f

h−π�
ε (x)|(ûε(x) − u(x))

+ (u(x) − u(xα) − (x− xα,∇u(xα))) + (x− xα,∇u(xα) − 
a)|π�
ε (x) dx.

Obviously, for h → 0 we have

lim
ε→0

∫
Kα

h ∩Ωε
f

h−π�
ε (x)|u(x) − u(xα) − (x− xα,∇u(xα))|π�

ε (x) dx = O(hn+p−
). (5.31)

Now it follows from (5.31) that

lim
ε→0

∫
Kα

h ∩Ωε
f

h−π�
ε (x)|vε − (x− xα,
a)|π�

ε (x) dx

� C lim
ε→0

( ∫
Kα

h ∩Ωε
f

h−π�
ε (x)|ûε(x) − u(x)|π�

ε (x) dx

+
∫

Kα
h ∩Ωε

f

h−π�
ε (x)|(x− xα,∇u(xα) − 
a)|π�

ε (x) dx
)

+O(hn+p−
)

(5.32)

as h → 0. We set 
a = 
aα = ∇u(xα). It follows from the strong convergence of the
sequence {uε} to u in the space Lp0(·)(Ωε

f ) and (5.32) that

lim
ε→0

∫
Kα

h ∩Ωε
f

h−γ−π�
ε (x)|vε − (x− z,∇u(xα))|π�

ε (x) dx = O(hn+p−−γ) as h → 0.

(5.33)
Now definition (2.10) and relations (5.30)–(5.33) give

lim
ε→0

∫
Kα

h ∩Ωε
f

κε(x)|∇vε|π�
ε (x) dx � lim

ε→0
cε,h
π�

ε (·)(x
α,∇u(xα)) −O(hn+p−−γ). (5.34)
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Due to the definition of the function vε, relation (5.34) means that

lim
ε→0

∑
α

∫
Kα

h ∩(Ωε
f \Gε

f )
κε(x)|∇ûε|π�

ε (x) dx

� lim
ε→0

∑
α

cε,h
π�

ε (·)(x
α,∇u(xα))

− lim
ε→0

k−1
0

∫
Gε

f

|∇ûε|π�
ε (x) dx+ o(1) as h → 0. (5.35)

Moreover, due to (4.39), the second term on the right-hand side of (5.35) equals
zero. Finally, we go back to the functional Jπ�

ε . Since ûε = uε in Ωε \Gε, we obtain
from (5.35) that

lim
ε→0

Jπ�
ε [uε] � lim

ε→0

( ∑
α

cε,h
π�

ε (·)(x
α,∇u(xα))

+
∑
α

∫
Kα

h ∩Ωε
f

(
1

σ(x)
|uε|σ(x) − gε(x)uε

)
dx

+
∫

Gε

Fπ�
ε
(x, uε,∇uε) dx

)
+ o(1) (5.36)

as h → 0. We pass to the limit in the inequality (5.36) first as ε → 0 and then
as h → 0. Taking into account the strong convergence of the sequence {uε}(ε>0)
to u in the space Lp0(·)(Ωε

f ), the regularity of the function g given in (2.8), the
properties of the function pε, conditions (C1), (C3) and lemma 4.3, we obtain the
desired inequality (5.22).

It remains to pass from the result in C1
0 (Ω) to the result in W 1,p0(·)(Ω). Function

π�
ε satisfies π�

ε � p0 in Ω. Therefore, the family {Jπ�
ε } is (uniformly in ε) continuous

in theW 1,p0(·)(Ω) topology. In addition, as proved in lemma 3.2, the functional Jhom
is continuous in the W 1,p0(·)(Ω) topology. Then the fact that inequality (5.22) holds
for any u ∈ C1

0 (Ω) implies that (5.22) holds for any u ∈ W
1,p0(·)
0 (Ω). This completes

the proof of the ‘lim inf’ inequality for the functional Jπ�
ε .

Step 2 (lower bound for the original functional). Let u be an arbitrary function
from Lp0(·)(Ω) and let {uε} be a sequence which converges to the function u strongly
in Lp0(·)(Ωε

f ) and such that Jε[uε] � C. First we note that one can prove the
inequality

lim
ε→0

Jε[uε] � Jhom[u] for all u ∈ C1
0 (Ω) (5.37)

in the same way as the inequality (5.22). Note that, in contrast with Jπ�
ε , the

functional Jε is not continuous in the W 1,p0(·) topology unless we restrict ourself to
the case when pε � p0. Therefore, the fact that (5.37) holds for any C1

0 -function does
not imply that it is true for any u ∈ W

1,p0(·)
0 (Ω). So, let u ∈ W 1,p0(·)(Ω). Consider

the value

Iε[uε] =
∫

Ω

κε(x)|∇uε|π�
ε (x)(|∇uε|pε(x)−π�

ε (x) − 1) dx. (5.38)
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We check easily that

max
0<B<1

(−Bπ�
ε (x)(Bpε(x)−π�

ε (x) − 1)) � C(ε) with C(ε) → 0 as ε → 0 (5.39)

and

lim
ε→0

Jε[uε] � lim
ε→0

Iε[uε] + lim
ε→0

Jπ�
ε [uε]

� lim
ε→0

∫
{|∇uε|<1}∩Ω

κε(x)|∇uε|π�
ε (x)(|∇uε|pε(x)−π�

ε (x) − 1) dx+ Jhom[u].

(5.40)

Combining (5.39) and (5.40), we assert that

lim
ε→0

Jε[uε] � Jhom[u] for all u ∈ W 1,p0(·)(Ω). (5.41)

If u is an arbitrary function from W
1,p0(·)
0 (Ω) and {uε} is a sequence converging to

the function u strongly in Lp0(·)(Ω), then inequalities (5.37) and (5.41) mean that

lim
ε→0

Jε[uε] � Jhom[u] (5.42)

and the lower bound is obtained.

5.3. Step 3: convergence result (2.17) in the matrix part

It remains to prove the convergence result (2.17). Suppose that the solution u of
the homogenized problem is a sufficiently smooth function (if not, we use smooth
approximations of u to construct ũε). Let ũε be the function defined in (5.5) with
w = u. Then it follows from (5.20) and (5.42) that

lim
ε→0

Jε[ũε] = lim
ε→0

Jε[uε] = Jhom[u]. (5.43)

It follows that limε→0 J
ε[ũε] − limε→0 J

ε[uε] = 0, that is

lim
ε→0

( ∫
Ω

(
κε(x)|∇ũε|pε(x) +

1
σ(x)

|ũε|σ(x) + gεũε

)
dx

−
∫

Ω

(
κε(x)|∇uε|pε(x) +

1
σ(x)

|uε|σ(x) + gεuε

)
dx

)
= 0. (5.44)

We aim to deduce from the latter relation that

lim
ε→0

‖ũε − uε‖Lσ(·)(Ω) = 0. (5.45)

To this end we make use of the following lemma.

Lemma 5.1.

(i) Let p = p(x) be a continuous function such that 1 � p− � p(x) � p+ in Ω̄.
Then, for any vectors ξ1, ξ2 ∈ R

n, we have

1
p(·) |ξ2|p(·) − 1

p(·) |ξ1|p(·) � (ξ1|ξ1|p(·)−2, ξ2 − ξ1). (5.46)
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(ii) Let p = p(x) be a continuous function such that 2 � p− � p(x) � p+ in Ω̄.
Then, for any vectors ξ1, ξ2 ∈ R

n, there exists a strictly positive constant
L = L(p−) such that

1
p(·) |ξ2|p(·) − 1

p(·) |ξ1|p(·) � (ξ1|ξ1|p(·)−2, ξ2 − ξ1) + L|ξ2 − ξ1|p(·). (5.47)

(iii) Let p = p(x) be a continuous function such that 1 � p− � p(x) � p+ < 2 in
Ω̄. Then, for any vectors ξ1, ξ2 ∈ R

n, there exists a strictly positive constant
L = L(p−) such that

1
p(·) |ξ2|p(·) − 1

p(·) |ξ1|p(·) � (ξ1|ξ1|p(·)−2, ξ2 − ξ1)+L
|ξ2 − ξ1|2

(|ξ1| + |ξ2|)2−p(·) . (5.48)

The proof of lemma 5.1 is given in the appendix.
Now we prove the relation (5.45). In view of lemma 5.1 we should consider four

subsets of the domain Ω:

Ωpε

+
def= Ω ∩ {x : pε(x) � 2}, Ωpε

−
def= Ω \Ωpε

+ ,

Ωσ
+

def= Ω ∩ {x : σ(x) � 2}, Ωσ
−

def= Ω \Ωσ
+.

However, for the sake of simplicity we assume here that pε, σ � 2 in Ω. Then we
apply (5.47) for p = pε, ξ1 = ∇uε and ξ2 = ∇ũε and we obtain

L

∫
Ω

κε(x)|∇uε − ∇ũε|pε(x) �
∫

Ω

κε(x)|∇ũε|pε(x) −
∫

Ω

κε(x)|∇uε|pε(x)

−
∫

Ω

Kε(x)(|∇uε|pε(x)−2∇uε,∇ũε − ∇uε).

(5.49)

In a similar way, with p = σ we obtain the following inequality:

L1

∫
Ω

1
σ(x)

|uε − ũε|σ(x) �
∫

Ω

1
σ(x)

|ũε|σ(x) −
∫

Ω

1
σ(x)

|uε|σ(x)

−
∫

Ω

|uε|σ(x)−2uε(ũε − uε) (5.50)

Using (5.49) and (5.50) we obtain

min{L,L1}
∫

Ω

(κε(x)|∇uε − ∇ũε|pε(x) + |uε − ũε|σ(x)) dx

�
∫

Ω

(
κε(x)|∇ũε|pε(x) +

1
σ(x)

|ũε|σ(x)
)

dx

−
∫

Ω

(
κε(x)|∇uε|pε(x) +

1
σ(x)

|uε|σ(x)
)

dx

−
∫

Ω

(Kε(x)(|∇uε|pε(x)−2∇uε,∇ũε − ∇uε) + |uε|σ(x)−2uε(ũε − uε)) dx.

(5.51)
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Consider the third term on the right-hand side of (5.51). Since uε = ũε = 0 on ∂Ω,
then we have∫

Ω

(Kε(x)(|∇uε|pε(x)−2∇uε,∇ũε − ∇uε) + |uε|σ(x)−2uε(ũε − uε)) dx

=
∫

Ω

(− div(Kε(x)|∇uε|pε(x)−2∇uε) + |uε|σ(x)−2uε)(ũε − uε) dx. (5.52)

Since uε is the solution of variational problem (2.9), the first term on the right-hand
side of (5.52) is such that∫

Ω

(− div(Kε(x)|∇uε|pε(x)−2∇uε)+|uε|σ(x)−2uε)(ũε−uε) dx =
∫

Ω

gε(x)(ũε−uε) dx.

(5.53)
Finally, from (5.44) and (5.51)–(5.53) we obtain the desired relation (5.45).

Consider now the functional bε,h
pε(·)(z, β) defined in (2.11). It is clear that the min-

imizer wε,h
z of the functional (2.11) satisfies the Neumann boundary-value problem

for the following equation:

− div(Kε(x)∇wε,h
z |∇wε,h

z |pε(x)−2) + 1ε
m(x)wε,h

z |wε,h
z |σ(x)−2

+ pε(x)h−pε(x)−γ1ε
f (x)(wε − β)|wε − β|pε(x)−2 = 0 in Kz

h. (5.54)

Let us multiply equation (5.54) by (wε − β) and integrate over the cube Kz
h. We

obtain ∫
Kz

h

(Kε(x)|∇wε,h
z |pε(x) + 1ε

m(x)|wε,h
z |σ(x)

+ pε(x)h−pε(x)−γ1ε
f (x)|wε − β|pε(x)) dx

= β

∫
Kz

h

1ε
m(x)wε,h

z |wε,h
z |σ(x)−2 dx. (5.55)

Now we represent the left-hand side of (5.55) in terms of the local energy charac-
teristic bε,h

pε(·)(z, β). Using condition (A3), we write∫
Kz

h

(Kε(x)|∇wε,h
z |pε(x) + 1ε

m(x)|wε,h
z |σ(x) + pε(x)h−pε(x)−γ1ε

f (x)|wε − β|pε(x)) dx

=
∫

Kz
h

pε(x)
(

κε(x)|∇wε,h
z |pε(x) +

1ε
m(x)
σ(x)

|wε,h
z |σ(x)

+ h−pε(x)−γ1ε
f (x)|wε − β|pε(x)

)
dx

+
∫

Kz
h

pε(x)
(

1
pε(x)

|wε,h
z |σ(x) − 1

σ(x)
|wε,h

z |σ(x)
)
1ε

m(x) dx

= p0(z)b
ε,h
pε(·)(z, β) +

∫
Kz

h

pε(x)|wε,h
z |σ(x)

(
1

pε(x)
− 1
σ(x)

)
1ε

m(x) dx+ o(hn)

(5.56)
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as h → 0. Therefore, it follows from (5.55) and (5.56) that

p0(z)b
ε,h
pε(·)(z, β) =

∫
Kz

h

|wε,h
z |σ(x)−2(βwε,h

z − |wε,h
z |2)1ε

m(x) dx

+
∫

Kz
h

pε(x)
σ(x)

|wε,h
z |σ(x)1ε

m(x) dx+ o(hn) as h → 0

or

bε,h
pε(·)(z, β) =

∫
Kz

h

1
pε(x)

|wε,h
z |σ(x)−2(βwε,h

z − |wε,h
z |2)1ε

m(x) dx

+
∫

Kz
h

1
σ(x)

|wε,h
z |σ(x)1ε

m(x) dx+ o(hn) as h → 0. (5.57)

Then it follows from condition (C4) of theorem 2.5 that

b(x, β) = lim
ε→0

h−n(ε)
( ∫

Kz
h

1
pε(x)

|wε,h
z |σ(x)−2(βwε,h

z − |wε,h
z |2)1ε

m(x) dx

+
∫

Kz
h

1
σ(x)

|wε,h
z |σ(x)1ε

m(x) dx
)
. (5.58)

Now let ζ be a smooth function in Ω. Consider the quantity:

Jε[ũε] def=
∫

Ωε
m

(
1

pε(x)
|ũε|σ(x)−2(uũε − |ũε|2) +

1
σ(x)

|ũε|σ(x)
)
ζ(x) dx.

It follows from (5.58) that

lim
ε→0

Jε[ũε] =
∫

Ω

b(x, u)ζ(x) dx. (5.59)

Now the desired relation (2.17) follows from (5.45) and (5.59). This completes the
proof of theorem 2.5.

6. Periodic example

Theorem 2.5 provides sufficient conditions for the existence of the homogenized
functional (2.15) and for the convergence of minimizers of the variational problem
(2.9) to the minimizer of the homogenized variational problem (2.14) under con-
ditions (A1)–(A5), (K1), (K2) and (C1)–(C4). It is important to show that the
‘intersection’ of these conditions is not empty. The aim of this section is to prove
that all the conditions of the above-mentioned theorem are satisfied for periodic
media, and to compute the coefficients of the homogenized functional (2.15) either
in an explicit form or, as is usually the case, by the solution of a corresponding cell
problem.

Let Ω be a bounded domain in R
n, n � 2, with Lipschitz boundary. We assume

that, in the standard periodic cell Y = (0, 1)n, there is an obstacle M ⊂ Y with
Lipschitz boundary ∂M (see figure 2). We assume that this geometry is repeated
periodically in the whole R

n. The geometric structure within the domain Ω is then
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Figure 2. The reference cell Y.

obtained by intersecting the ε-multiple of this geometry with Ω, ε being a small
positive parameter. Let {xi,ε} be an ε-periodic grid in Ω. Then we define Ωε

m as
the union of sets Mε

i ⊂ Ki
ε, i = 1, 2, . . . , Nε, obtained from εM by translations of

vectors

ε

n∑
j=1

kjej ,

that is,

Ωε
m =

Nε⋃
i

Mε
i and Ωε

f = Ω \Ωε
m, (6.1)

where Ki
ε is the cube centred at the point xi,ε and of length ε, kj ∈ Z, {ej}n

j=1 is
the canonical basis of R

n and Nε → +∞ as ε → 0.
Let p0 = p0(x) be a log-Hölder continuous function such that

2 < p− ≡ min
x∈Ω̄

p0(x) � p0(x) � max
x∈Ω̄

p0(x) ≡ p+ < +∞ in Ω̄. (6.2)

Let {pε}(ε>0) ⊂ Pε
0 be a sequence defined by

pε(x)
def= p0(x) + dε(x), (6.3)

where the function dε is such that dε = o(1) as ε → 0. The asymptotic behaviour
of dε will be specified in convergence theorems below. On the space W 1,pε(·)(Ω) we
define the functional Jε : W 1,pε(·)(Ω) → R ∪ {+∞},

Jε[u] def=

⎧⎪⎨
⎪⎩

∫
Ω

(
Kε(x)
pε(x)

|∇u|pε(x) +
1

σ(x)
|u|σ(x) − gε(x)u

)
dx if u ∈ W 1,pε(·)(Ω),

+∞ otherwise,
(6.4)

where

Kε(x) =

{
kf in Ωε

f ,

kmε
p0(x) in Ωε

m,
(6.5)

the function σ satisfies condition (A4) with σ− > 2 and (A5), and the function gε

is defined in (2.8). Here kf , km are strictly positive constants independent of ε.
Consider the following variational problem:

Jε[uε] → min, uε ∈ W
1,pε(·)
0 (Ω). (6.6)

We aim to study the asymptotic behaviour of the solution of (6.6): uε.
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To formulate the main result of this section we introduce some notation. We
denote by ua = ua(x, y) the unique solution in W

1,p0(·)
# (F) of the following cell

problem:

divy(kf |∇yua|p0(x)−2∇yua) = 0 in F,

(kf |∇yua|p0(x)−2∇yua − 
a, 
ν) = 0 on ∂M, y → ua(y)Y-periodic,

}
(6.7)

where F = Y \ M, 
ν is the outward normal vector to ∂M, and 
a ∈ R
n. We denote

by wβ = wβ(x, y) the unique solution in W 1,p0(·)
# (M) of the following cell problem:

− divy(kmd(x)|∇ywβ |p0(x)−2∇ywβ) + |wβ |p0(x)−2wβ = 0 in M,

wβ(y) = β on ∂M, y → wβ(y)Y-periodic.

}
(6.8)

Note that, in the cell problems (6.7) and (6.8), x is a parameter. Regularity results
for ua and wβ are thus easily deduced from [12] and [18]. We also introduce the
homogenized functional Jhom : W 1,p0(·)(Ω) → R ∪ {+∞}:

Jhom[u] def=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
Ω

(
A(x,∇u) +

ρ�

σ(x)
|u|σ(x) + b(x, u) − g(x)ρ�u

)
dx

if u ∈ W
1,p0(·)
0 (Ω),

+∞ otherwise.

(6.9)

The following results hold.

Theorem 6.1. Let uε be a solution of (6.6). Assume that

lim
ε→0

ε−dε(·) = d(·) (6.10)

uniformly in Ω. Then uε converges strongly in Lp0(·)(Ωε
f ) to u the solution of the

variational problem
Jhom[u] → min, u ∈ W

1,p0(·)
0 (Ω),

where

ρ� def= meas F, (6.11)

A(x,
a) def=
1

p0(x)

∫
F

|∇yua(x, y) − 
a|p0(x) dy, (6.12)

b(x, β) def= β

∫
M

wβ(x, y)|wβ(x, y)|p0(x)−2 dy. (6.13)

Theorem 6.2. Let uε be a solution of (6.6). Assume that, for any x ∈ Ω,

lim
ε→0

ε−dε(x) = +∞. (6.14)

Then uε converges strongly in Lp0(·)(Ωε
f ) to u, the solution of the variational prob-

lem
Jhom[u] → min, u ∈ W

1,p0(·)
0 (Ω),
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where ρ� and the function A(x,
a) are given in (6.11), (6.12) and

b(x, β) def=
meas M

σ(x)
|β|σ(x). (6.15)

Theorem 6.3. Let uε be a solution of (6.6). Assume that, for any x ∈ Ω,

lim
ε→0

ε−dε(x) = 0. (6.16)

Then uε converges strongly in Lp0(·)(Ωε
f ) to u the solution of the variational problem

Jhom[u] → min, u ∈ W
1,p0(·)
0 (Ω),

where ρ� and the function A(x,
a) are given in (6.11), (6.12) and

b(x, β) = 0. (6.17)

Remark 6.4. Note that if

Kε(x) = 1ε
fkf + 1ε

mkmε
pε(x),

then theorem 6.1 holds true with d(x) ≡ 1.

The proofs of theorems 6.1–6.3 are similar (with evident modifications) and we
restrict ourselves to the proof of theorem 6.1.

6.1. Proof of theorem 6.1

The proof of theorem 6.1 is made in four steps. In the first step we prove that
condition (C1) is satisfied and compute the function ρ(x). In the second step we
prove condition (C2), i.e. the extension condition. Then we prove (C3) and compute
A(x,
a). Finally, in the fourth step we compute the function b(x, β).

6.1.1. Condition (C1): the function ρ(x)

Let Kz
h be an open cube centred at z ∈ Ω with length equal to h with 0 < ε �

h < 1. It is easy to check that

meas(Kz
h ∩Ωε

f ) =
hn

εn
meas(εF) + o(hn) as h → 0. (6.18)

Then condition (C1) is satisfied and the function ρ(x) = ρ� ∈ R is given by (6.11).

6.1.2. Extension condition (C2)

Let uε be an arbitrary function from the space W 1,pε(·)(Ωε
f ). Taking its restric-

tion to any cell Fε
i = Ki

ε \ Mε
i , we reduce our problem to the proof of the strong

connectedness condition (C2) for the cube Ki
ε. We map the cell Fε

i on the standard
domain F = Y \ M by considering the function Uε ∈ W 1,pε(·)(F) defined by

Uε(ξ) = uε(εξ + xi,ε).

We have ∫
Fε

i

|∇uε|pε(x) dx = εn

∫
F

εPε(ξ)|∇Uε|Pε(ξ) dξ, (6.19)
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where Pε(ξ) = pε(εξ+xi,ε). We denote by Uε
F the mean value of the function Uε in

F. Due to assumptions (6.2) and (6.3), there exists an extension Eε of the function
Eε(·) = Uε(·) − Uε

F in the ball M such that

‖Eε‖W 1,P �
ε (·)(Y) � C1‖Eε‖W 1,Pε(·)(F),

where P �
ε (ξ) = p�

ε(εξ+ xi,ε) and the sequence of functions {p�
ε}(ε>0) satisfies asser-

tions (i) and (ii) of condition (C2). Namely, the extension being constructed as
usual by reflexion (see, for instance, [1]), we can easily guess that p�

ε = pε in Fε
i and

Cpε � sup∪Ki
ε
|ωpε |. Let us now extend the function Uε in M by

U ε(ξ) = Eε(ξ) + Uε
F.

Applying the Poincaré inequality to the function Eε in the domain F, we obtain

‖∇U ε‖LP �
ε (·)(Y) = ‖∇Eε‖LP �

ε (·)(Y) � ‖Eε‖W 1,P �
ε (·)(F) � C1‖Eε‖W 1,Pε(·)(F)

� C‖∇Uε‖LPε(·)(F) � Cmax(Υ 1/p−

Pε(·),F(|∇Uε|), Υ 1/p+

Pε(·),F(|∇Uε|)),
(6.20)

where C is a constant which does not depend on ε, Uε. Now, for any i, we introduce
the function uε

i defined by

uε
i (x) = U ε

(
x− xi,ε

ε

)
. (6.21)

This is an extension of the function uε in the ball M and uε
i ∈ W 1,pε(·)(Ki

ε). More-
over, inequality (6.19) remains true. With (6.20), this means that conditions (C2)
are satisfied.

6.1.3. Condition (C3): the function A(x,
a)

Let z ∈ Ω. We recall that the functional cε,h
pε(·)(z,
a) that appeared in condition

(C3) has the form:

cε,h
pε(·)(z,
a)

def= inf
vε

∫
Kz

h∩Ωε
f

(κε(x)|∇vε|pε(x) + h−pε(x)−γ |vε − (x− z,
a)|pε(x)) dx,

(6.22)
where κε(x) = kf/pε(x) in Ωε

f , γ > 0, 
a ∈ R
n, and the infimum is taken over

vε ∈ W 1,pε(·)(Kz
h ∩Ωε

f ).
The idea of the proof of condition (C3) for the functional cε,h

pε(·)(z,
a) is as follows.
Firstly, using the solution of (6.7), we will approximate the minimizer of cε,h

pε(·)(z,
a)
and show that the residue, i.e. the difference between the minimizer and the approx-
imation, gives a small contribution (as ε, h → 0) in the functional cε,h

pε(·)(z,
a). The
function A(x,
a) is then calculated in terms of the approximating function.

Let Ua(z, ·) be a Y-periodic extension of the function ua(z, ·) solution of the cell
problem (6.7), on R

n \ M, where M is the union of sets Mj obtained from M by
translations of vectors

n∑
j=1

ljej , lj ∈ Z.

The regularity properties of the function Ua are given by the following lemma.
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Lemma 6.5. The function Ua possesses the following properties:

Ua(z, ·) ∈ Lq(F) and ∇Ua(z, ·) ∈ Lp0(z)+δ(F), (6.23)

where δ > 0 and

q =

⎧⎨
⎩

p0(z)n
n− p0(z)

if p0(z) < n,

any number if p0(z) � n.

Denote by {xi,ε} an ε-periodic grid in the cube Kz
h and denote by Ki

ε the cube
centred at the point xi,ε and of length ε. We cover Kz

h by cubes Ki
ε and introduce

a function W ε defined by

W ε(x) = (x− z,
a) − εUa

(
z,
x

ε

)
in

( ⋃
Ki

ε

)
∩Kz

h. (6.24)

Now let vε
min be the minimizer of (6.22). We represent this function as follows:

vε
min(x) = W ε(x) + ζε(x), x ∈ Kz

h ∩Ωε
f . (6.25)

We will prove that ζε gives a vanishing contribution (as ε → 0 and h → 0) in
cε,h
pε(·)(z,
a) and, therefore, the functional (6.22) may be approximated in terms of

the function W ε.
The property (6.23) of the function Ua and the uniform convergence of pε to

p0 imply that, for ε small enough, W ε ∈ W 1,pε(·)(Kz
h ∩Ωε

f ). Thus, by definition of
cε,h
pε(·), we have

cε,h
pε(·)(z,
a) � W ε,h(z,
a), (6.26)

where

W ε,h(z,
a) =
∫

Kz
h∩Ωε

f

(κε(x)|∇W ε|pε(x)+h−γ−pε(x)|W ε−(x−z,
a)|pε(x)) dx. (6.27)

Due to the definition of the function W ε, for sufficiently small ε, we have

W ε,h(z,
a) = hn

∫
F

kf

p0(z)
|∇ua(z, y) − 
a|p0(z) dy + o(hn) as h → 0. (6.28)

Let us estimate cε,h
pε(·)(z,
a) from below. In view of lemma 5.1(ii), for any vectors

ξ1, ξ2 ∈ R
n, there exists δ which does not depend on ε and such that

|ξ1 + ξ2|pε(·) � |ξ1|pε(·) + δ|ξ2|pε(·) + pε(·)|ξ1|pε(·)−2(ξ1, ξ2).

Then we obtain

cε,h
pε(·)(z,
a)

� W ε,h(z,
a) + δZ ε,h(z,
a) +
∫

Kz
h∩Ωε

f

kf |∇W ε|pε(x)−2(∇W ε,∇ζε) dx

+ h−γ

∫
Kz

h∩Ωε
f

pε(x)h−pε(x)|W ε − (x− z,
a)|pε(x)−2(W ε − (x− z,
a))ζε dx

= W ε,h(z,
a) + δZ ε,h(z,
a) + jε,h
1 + jε,h

2 , (6.29)
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where

Z ε,h(z,
a) =
∫

Kz
h∩Ωε

f

(κε(x)|∇ζε|pε(x) + h−γ−pε(x)|ζε|pε(x)) dx. (6.30)

Finally, from (6.26) and (6.29) we obtain the following bound for the residue ζε:

0 � Z ε,h(z,
a) � C(|jε,h
1 | + |jε,h

2 |). (6.31)

Now let us estimate the right-hand side of inequality (6.31).

Estimate for jε,h
1 . We rewrite jε,h

1 as follows:

jε,h
1 = kf

∫
Kz

h∩Ωε
f

(|∇W ε|pε(x)−2 − |∇W ε|p0(x)−2)(∇W ε,∇ζε) dx

+ kf

∫
Kz

h∩Ωε
f

|∇W ε|p0(x)−2(∇W ε,∇ζε) dx

= jε,h
11 + jε,h

12 . (6.32)

First, let us estimate jε,h
11 . Applying Hölder’s inequality (3.1), we obtain

|jε,h
11 | � C‖∇ζε‖Lpε(·)(Kz

h∩Ωε
f )‖|∇W ε|||∇W ε|pε(·)−2 − |∇W ε|p0(·)−2|‖Lqε(·)(Kz

h∩Ωε
f ),

(6.33)
where 1/pε + 1/qε = 1. We note that, due to the properties of {pε}, there exist two
real numbers q− and q+ such that

1 < q− � q−
ε ≡ min

x∈Ω̄
qε(x) � qε(x) � max

x∈Ω̄
qε(x) ≡ q+ε � q+.

It now follows from (3.2) that

‖|∇W ε|||∇W ε|pε(·)−2 − |∇W ε|p0(·)−2|‖Lqε(·)(Kz
h∩Ωε

f )

�
( ∫

Kz
h∩Ωε

f

|∇W ε|qε(x)|∇W ε|pε(x)−2 − |∇W ε|p0(x)−2|qε(x) dx
)1/q+

. (6.34)

Taking into account the properties of the function Ua, we estimate the right-hand
side of (6.34) and obtain the following bound:

‖|∇W ε|||∇W ε|pε(·)−2 − |∇W ε|p0(·)−2|‖Lqε(·)(Kz
h∩Ωε

f ) � C1(ε, h), (6.35)

with C1(ε, h) → 0 as ε → 0. Now, turning back to (6.33), we use the following
estimates for ζε deduced from (6.25) and (6.26):∫

Kz
h∩Ωε

f

|ζε|pε(x) dx � Chn+γ+p−
K and

∫
Kz

h∩Ωε
f

|∇ζε|pε(x) dx � Chn, (6.36)

where
2 � p−

K � p−
ε ≡ min

x∈Kz
h

pε(x) � pε(x) � max
x∈Kz

h

pε(x) ≡ p+
ε � p+

K
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in Kz
h to conclude with (6.33) and (6.35) that

|jε,h
11 | � C2(ε, h) with C2(ε, h) → 0 as ε → 0. (6.37)

Now consider the term jε,h
12 . Let Kz

�
be the cube centred at the point z ∈ Kz

h

and of length � = h−h1+α, where α is a positive parameter which will be specified
later. Let ϕh be a smooth cutoff function defined in Kz

h and such that ϕh(x) = 1
in Kz

�
and ϕh(x) = 0 for x ∈ Ω \Kz

h. Then

jε,h
12 = kf

∫
Kz

h∩Ωε
f

|∇W ε|p0(x)−2(∇W ε,∇(ϕhζ
ε)) dx

+ kf

∫
Kz

h∩Ωε
f

|∇W ε|p0(x)−2(∇W ε,∇((1 − ϕh)ζε)) dx

= iε,h
1 + iε,h

2 . (6.38)

Integrating by parts and using the boundary condition of the function ua on ∂M,
we rewrite iε,h

1 as follows:

iε,h
1 = −

∫
Kz

h∩Ωε
f

div(kf |∇W ε|p0(x)−2∇W ε)ϕhζ
ε dx

+ kf

∫
∂Kz

h

|∇W ε|p0(x)−2 ∂W
ε

∂
ν
ϕhζ

ε dsx.

But in view of the definition of functions W ε in (6.7) and ϕh, the latter relation
proves that

iε,h
1 ≡ 0. (6.39)

Consider the second term of the right-hand side of (6.38). The definition of the
function ϕh implies the following bound:∣∣∣∣i

ε,h
2

kf

∣∣∣∣ �
∫

(Kz
h\Kz

�
)∩Ωε

f

|∇W ε|p0(x)−1|∇ζε| dx

+
∫

(Kz
h\Kz

�
)∩Ωε

f

|∇W ε|p0(x)−1|∇ϕh||ζε| dx. (6.40)

Using Hölder’s inequality (3.1) and (6.23), for the first term of the right-hand side
of (6.40) we obtain∫

(Kz
h\Kz

�
)∩Ωε

f

|∇W ε|p0(x)−1|∇ζε| dx

� 2‖∇ζε‖Lpε(·)(Kz
h∩Ωε

f )‖|∇W ε|p0(x)−1‖Lqε(·)((Kz
h\Kz

�
)∩Ωε

f )

� Chn/p0(z)
( ∫

(Kz
h\Kz

�
)∩Ωε

f

|∇W ε|p(z,h) dx
)1/q(z,h)

, (6.41)

where

p(z, h) = p0(z) + o(1) and q(z, h) =
p0(z)

p0(z) − 1
+ o(1) as h → 0.
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Let us estimate the integral of the right-hand side of (6.41). We have∫
(Kz

h\Kz
�
)∩Ωε

f

|∇W ε|p(z,h)

�
( ∫

(Kz
h\Kz

�
)∩Ωε

f

|∇W ε|p0(z)+δ

)1/(qδ(z,h))

[meas((Kz
h \Kz

�
) ∩Ωε

f )]1/(ηδ(z,h))

� Chn/qδ(z,h) · h(n+α)/(ηδ(z,h)), (6.42)

where qδ(z, h) = (p0(z) + δ)/p(z, h) and 1/ηδ(z, h) + 1/qδ(z, h) = 1. It follows from
(6.42) that ( ∫

(Kz
h\Kz

�
)∩Ωε

f

|∇W ε|p(z,h)
)1/q(z,h)

� Chθ(n), (6.43)

where

θ(n) = n
p0(z) − 1
p0(z)

+ α

(
p0(z) − 1
p0(z)

− p0(z) − 1
p0(z) + δ

)
+ o(1) as h → 0. (6.44)

Then, from (6.41), (6.43) and (6.44) we deduce that, for sufficiently small h,∫
(Kz

h\Kz
�
)∩Ωε

f

|∇W ε|p0(x)−1|∇ζε| dx = o(hn) as h → 0. (6.45)

For the second term on the right-hand side of (6.40), from (6.36) and (6.44) we
have∫

(Kz
h\Kz

�
)∩Ωε

f

|∇W ε|p0(x)−1|∇ϕh||ζε| dx

� Ch−1−α

∫
(Kz

h\Kz
�
)∩Ωε

f

|∇W ε|p0(x)−1|ζε| dx

� Ch−1−α

( ∫
(Kz

h\Kz
�
)∩Ωε

f

|∇W ε|pε(x)(p0(x)−1)/(pε(x)−1) dx
)(p−

K−1)/p−
K

×
( ∫

Kz
h∩Ωε

f

|ζε|pε(x) dx
)1/p+

K

� Chµ(γ,n), (6.46)

where

µ(γ, n) = n− α

(
1

p0(z)
+
p0(z) − 1
p0(z) + δ

)
+

γ

p0(z)
+ o(1) as h → 0. (6.47)

We choose α such that

α < γ
p0(z) + δ

p2
0(z) + p0(z) + δ − 1

. (6.48)
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Then, for sufficiently small h we have that µ(γ, n) > n and, therefore, for the first
term on the right-hand side of (6.40) we obtain∫

(Kz
h\Kz

�
)∩Ωε

f

|∇W ε|p0(x)−1|∇ϕh||ζε| dx = o(hn) as h → 0. (6.49)

Now, from inequalities (6.38), (6.39), (6.45) and (6.49), for sufficiently small ε, we
obtain the bound:

|jε,h
12 | = o(hn) as h → 0. (6.50)

Finally, alongside (6.37), estimate (6.50) gives:

|jε,h
1 | = o(hn) as h → 0. (6.51)

Estimate for jε,h
2 . In a similar way, by using the definition of the function W ε, we

obtain
|jε,h

2 | � C3(ε, h) with C3(ε, h) → 0 as ε → 0. (6.52)

Estimates (6.51) and (6.52) together with (6.31) imply that

Z ε,h(z,
a) = o(hn) as h → 0. (6.53)

Thus the residue ζε gives a small contribution (as ε, h → 0) in the functional
cε,h
pε(·)(z,
a). With (6.26), (6.29), (6.51) and (6.52) we conclude that, for sufficiently

small ε,
cε,h
pε(·)(z,
a) = W ε,h(z,
a) + o(hn) as h → 0.

Because W ε,h(z,
a) satisfies (6.28), the latter relation proves that condition (C3) is
fulfilled and that

A(z,
a) =
∫

F

kf

p0(z)
|∇ua(z, y) − 
a|p0(z) dy,

where ua is the solution of the cell problem (6.7).

6.1.4. Condition (C4): the function b(x, β)

First, we recall that the functional bε,h
pε(·)(z, β) appearing in condition (C4) has

the form:

bε,h
pε(·)(z, β) = inf

wε

∫
Kz

h

(
κε|∇wε|pε(x) +

1ε
m

σ
|wε|σ(x) + h−pε(x)−γ1ε

f |wε − β|pε(x)
)

dx,

(6.54)
where the infimum is taken over wε ∈ W 1,pε(·)(Kz

h).
Let us denote wε, the minimizer of (6.54), in the form

wε(x) = w̃ε + ξε(x), (6.55)

where

w̃ε(x) =

⎧⎨
⎩wβ

(
x− xi,ε

ε

)
in Ωε

m ∩Ki
ε,

β in Ωε
f ∩Kz

h.

(6.56)
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We will prove that ξε gives a vanishing contribution (as ε → 0 and h → 0) in
bε,h
pε(·)(z, β) and, therefore, that the functional (6.54) may be calculated in terms of

the function w̃ε or, more precisely, in terms of the function wβ .
Firstly, it is easy to see that

bε,h
pε(·)(z, β) �

∫
Kz

h

(
κε|∇w̃ε|pε(x) +

1ε
m

σ
|w̃ε|σ(x) + h−pε(x)−γ1ε

f |w̃ε − β|pε(x)
)

dx

=
∫

Kz
h∩Ωε

m

(
κε(x)|∇w̃ε|pε(x) +

1
σ(x)

|w̃ε|σ(x)
)

dx

def= Mε,h(z, β). (6.57)

Let us calculate the integral on the right-hand side of (6.57). Taking (6.2), (6.3)
and the regularity properties of p0, σ,wβ into account, for sufficiently small ε, we
have

Mε,h(z, β) =
∫

Kz
h∩Ωε

m

(
kmε

p0(x)

pε(x)
|∇w̃ε|pε(x) +

1
σ(x)

|w̃ε|σ(x)
)

dx

=
∫

Kz
h∩Ωε

m

(
kmε

−dε(x)

pε(x)

∣∣∣∣∇wβ

(
x− xε

i

ε

)∣∣∣∣
pε(x)

+
1

σ(x)
|w̃ε|σ(x)

)
dx

= hn

∫
M

(
kmd(z)
p0(z)

|∇wβ |p0(z) +
1

σ(z)
|wβ |σ(z)

)
dx+ o(hn) as h → 0.

(6.58)

To rewrite the right-hand side of (6.58) we consider the boundary-value problem
(6.8). Multiplying (6.8) by (wβ − β)/p0(z) and integrating over M, we obtain∫

M

kmd(z)
p0(z)

|∇wβ |p0(z) =
1

p0(z)

∫
M

(βwβ |wβ |σ(z)−2 − |wβ |σ(z)) dx. (6.59)

It then follows from (6.58) and (6.59) that, for sufficiently small ε and as h → 0,

Mε,h(z, β) = hn

∫
M

(
1

p0(z)
(βwβ |wβ |σ(z)−2 − |wβ |σ(z)) +

1
σ(z)

|wβ |σ(z)
)

dx

+ o(hn). (6.60)

Let us estimate bε,h
pε(·)(z, β) from below. As before, we use lemma 5.1(ii). We have

bε,h
pε(·)(z, β) � Mε,h(z, β) + δX ε,h(z, β) +

∫
Kz

h

Kε(x)|∇w̃ε|pε(x)−2(∇w̃ε,∇ξε) dx

+
∫

Kz
h

1ε
m(x)|w̃ε|σ(x)−2w̃εξε dx

+
∫

Kz
h

h−pε(x)−γ1ε
f (x)|w̃ε − β|pε(x)−2(w̃ε − β)ξε dx



534 C. Choquet

= Mε,h(z, β) + δX ε,h(z, β) +
∫

Kz
h

Kε(x)|∇w̃ε|pε(x)−2(∇w̃ε,∇ξε) dx

+
∫

Kz
h

1ε
m(x)|w̃ε|σ(x)−2w̃εξε dx

= Mε,h(z, β) + δX ε,h(z, β) + µε,h(z, β), (6.61)

where

X ε,h(z, β) def=
∫

Kz
h

(
κε(x)|∇ξε|pε(x) +

1ε
m(x)
σ(x)

|ξε|σ(x)

+ h−pε(x)−γ1ε
f (x)|ξε|pε(x)

)
dx, (6.62)

µε,h(z, β) def=
∫

Kz
h∩Ωε

m

(Kε(x)|∇w̃ε|pε(x)−2(∇w̃ε,∇ξε) + |w̃ε|σ(x)−2w̃εξε) dx.

(6.63)

It follows from (6.57) and (6.61) that

0 � X ε,h(z, β) � 1
δ
|µε,h(z, β)|. (6.64)

Now let us prove that ξε gives a vanishing contribution in bε,h
pε(·)(z, β). To this

end, we have to estimate the right-hand side of (6.64). First, it is easy to see that∫
Kz

h∩Ωε
m

Kε(x)|∇w̃ε|pε(x)−2(∇w̃ε,∇ξε) dx

=
∫

⋃
i Mε

i

kmε
p0(x)|∇w̃ε|pε(x)−2(∇w̃ε,∇ξε) dx

=
∫

⋃
i Mε

i

kmd(z)εp0(z)|∇w̃ε|p0(z)−2(∇w̃ε,∇ξε) dx

+ km

∫
⋃

i Mε
i

(εp0(x)|∇w̃ε|pε(x)−2(∇w̃ε,∇ξε)

− d(z)εp0(z)|∇w̃ε|p0(z)−2(∇w̃ε,∇ξε)) dx. (6.65)

Moreover, it follows from the definition of the functions w̃ε, pε and (6.10) that the
second term on the right-hand side of (6.65) goes to zero as ε, h → 0.

Using (6.10), (6.8), (6.65) and the regularity properties of the functions wβ , p0, σ
and then integrating by parts, we obtain

X ε,h(z, β)

� C

∣∣∣∣
∫

Kz
h∩Ωε

m

(kmd(z)εp0(z)|∇w̃ε|p0(z)−2(∇w̃ε,∇ξε) + |w̃ε|σ(z)−2w̃εξε) dx
∣∣∣∣

� Cεp0(z)
∫

Kz
h∩∂Ωε

m

|∇w̃ε|p0(z)−2
∣∣∣∣∂w̃ε

∂ν

∣∣∣∣|ξε| dsx
def= J ε

µ . (6.66)
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To estimate the integral on the right-hand side of (6.66) we apply Hölder’s in-
equality. We obtain

∫
Kz

h∩∂Ωε
m

|∇w̃ε|p0(z)−2
∣∣∣∣∂w̃ε

∂ν

∣∣∣∣|ξε| dsx �
( ∑

i

∫
∂Mε

i

|ξε|p−
K dsx

)1/p−
K

×
( ∑

i

∫
∂Mε

i

[
|∇w̃ε|p0(z)−2

∣∣∣∣∂w̃ε

∂ν

∣∣∣∣
]p−

K/(p−
K−1)

dsx

)(p−
K−1)/p−

K

, (6.67)

where

2 � p−
K � p−

ε ≡ min
x∈Kz

h

pε(x) � pε(x) � max
x∈Kz

h

pε(x) ≡ p+
ε � p+

K in Kz
h.

Consider the second term on the right-hand side of (6.67). We have

∫
∂Mε

i

[
|∇w̃ε|p0(z)−2

∣∣∣∣∂w̃ε

∂ν

∣∣∣∣
]p−

K/(p−
K−1)

dsx

= εn−1 · (ε−p0(z)+1)p
−
K/(p−

K−1)
∫

∂M

[
|∇wβ |p0(z)−2

∣∣∣∣∂wβ

∂ν

∣∣∣∣
]p−

K/(p−
K−1)

dsx

� Cεn · ε−1−p0(z). (6.68)

Since (ε−1−p0(z))p
−
K/(p−

K−1) � Cε−p0(z)+1/p0(z), then it follows from (6.68) that

( ∑
i

∫
∂Mε

i

[
|∇w̃ε|p0(z)−2

∣∣∣∣∂w̃ε

∂ν

∣∣∣∣
]p−

K/(p−
K−1)

dsx

)(p−
K−1)/p−

K

� Chn(p−
K−1)/p−

Kε−p0(z)+1/p0(z). (6.69)

Inequalities (6.69), (6.66) and (6.67) give

J ε
µ � Chn(p−

K−1)/p−
Kε1/p0(z)

( ∑
i

∫
∂Mε

i

|ξε|p−
K dsx

)1/p−
K

.

Using the following bound [14, (7.135) in the case p0(z) ≡ 2],∫
∂Mε

i

|ξε|p−
K dsx � C

ε

∫
Kε

i \Mε
i

|ξε|p−
K dx+ Cεp0(z)−1

∫
Kε

i \Mε
i

|∇ξε|p−
K dx,

we obtain

J ε
µ � Chn(p−

K−1)/p−
K

( ∫
Kz

h∩∂Ωε
f

|ξε|p−
K dx+ εp0(z)

∫
Kz

h∩∂Ωε
f

|∇ξε|p−
K dx

)1/p−
K

. (6.70)

Let us estimate the right-hand side of inequality (6.70). Consider the first integral
in this inequality. It follows from Hölder’s inequality (3.1) and inequalities (3.2)
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that ∫
Kz

h∩∂Ωε
f

|ξε|p−
K dx � C‖|ξε|p−

K ‖Lηε(·)(Kz
h∩∂Ωε

f )

� C

( ∫
Kz

h∩∂Ωε
f

|ξε|pε(x) dx
)p−

K/p+
K

, (6.71)

εp0(z)
∫

Kz
h∩∂Ωε

f

|∇ξε|p−
K dx � C

(
εp0(z)(p+

K/p−
K)

∫
Kz

h∩∂Ωε
f

|∇ξε|pε(x) dx
)p−

K/p+
K

. (6.72)

Then it follows from (6.70)–(6.72) and the definition of the functional X ε,h(z, β)
that

J ε
µ � Chn(p−

K−1)/p−
K

( ∫
Kz

h∩∂Ωε
f

|ξε|pε(x) dx

+ εp0(z)(p+
K/p−

K)
∫

Kz
h∩∂Ωε

f

|∇ξε|pε(x) dx
)1/p+

K

= Chn(p−
K−1)/p−

K

( ∫
Kz

h∩∂Ωε
f

h−pε(x)−γ

h−pε(x)−γ
|ξε|pε(x) dx

+ εp0(z)(p+
K/p−

K)
∫

Kz
h∩∂Ωε

f

|∇ξε|pε(x) dx
)1/p+

K

� Chn(p−
K−1)/p−

K · h(p−
K/p+

K)+(γ/p+
K)(X ε,h(z, β))1/p+

K . (6.73)

Now it follows from (6.66) and (6.73) that

X ε,h(z, β) � Chn(p−
K−1)/p−

K · h(p−
K/p+

K)+(γ/p+
K)(X ε,h(z, β))1/p+

K

or
X ε,h(z, β) � Chς(n), (6.74)

where

ς(n) def= n
p−

K − 1
p−

K

· p+
K

p+
K − 1

+
p−

K

p+
K

· p+
K

p+
K − 1

+
γ

p+
K

· p+
K

p+
K − 1

. (6.75)

Due to the properties of the function p0 and (6.75),

ς(n) = n+
p−

K

p−
K − 1

+
γ

p−
K − 1

+O(h) as h → 0.

Since p−
K � 2, then ς(n) > n and we infer from (6.74) that

lim
ε→0

X ε,h(z, β) = o(hn) as h → 0. (6.76)

Thus, the residue ξε gives a small contribution (as ε, h → 0) in the functional
bε,h
pε(·)(z, β). We conclude that, for sufficiently small ε,

bε,h
pε(·)(z, β) = Mε,h(z, β) + o(hn) as h → 0.
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Because Mε,h(z,
a) satisfies (6.60), the latter relation proves that condition (C4) is
fulfilled and that

b(x, β) =
∫

M

(
1

p0(x)
(βwβ |wβ |σ(x)−2 − |wβ |σ(x)) +

1
σ(x)

|wβ |σ(x)
)

dy,

where wβ is the solution of (6.8).
Theorem 6.1 is proved.

Remark 6.6. Note that, for the sake of simplicity and brevity, in this section we
consider a periodic case only. We make use of the same arguments (with evident
modifications) for locally periodic or disperse media. In the proof of the correspond-
ing results we follow the ideas of [7, 14], where locally periodic and disperse media
were considered.

Appendix A. Proof of lemma 5.1

It is clear that the dependence of the function p on the variable x plays no role in
the proof. Then we take an arbitrary constant p > 1. Let f be a function defined
in R by

f(t) = |ξ1 + t(ξ2 − ξ1)|p.
Assertion (i) is justified by the convexity of f .

Now we prove assertions (ii) and (iii). The Taylor–MacLaurin formula gives

f(1) = f(0) + f ′(0) +
∫ 1

0
(1 − t)f ′′(t) dt,

that is,

|ξ2|p = |ξ1|p + p|ξ1|p−2ξ1 · (ξ2 − ξ1)

+
∫ 1

0
(1 − t)(p(p− 2)|ξ1 + t(ξ2 − ξ1)|p−4((ξ1 + t(ξ2 − ξ1)) · (ξ2 − ξ1))2

+ p|ξ1 + t(ξ2 − ξ1)|p−2|ξ2 − ξ1|2) dt,
(A 1)

if |ξ1 + t(ξ2 − ξ1)| �= 0 for 0 < t < 1. Of course, if there exists some t ∈ (0, 1) such
that ξ1 + t(ξ2 − ξ1) = 0, then we have

|ξ2|p − |ξ1|p − p|ξ1|p−2ξ1 · (ξ2 − ξ1) = |ξ2|p
(

1 − tp

(1 − t)p
+

ptp−1

(1 − t)p

)

and the result is obvious. We now have to estimate the integral term in (A 1).
We begin by assuming p � 2. We denote

I1 =
∫ 1

0
(1 − t)p(p− 2)|ξ1 + t(ξ2 − ξ1)|p−4((ξ1 + t(ξ2 − ξ1)) · (ξ2 − ξ1))2 dt,

I2 =
∫ 1

0
(1 − t)p|ξ1 + t(ξ2 − ξ1)|p−2|ξ2 − ξ1|2 dt.
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Then I1 � 0 and

I2 = p|ξ2 − ξ1|2
∫ 1

0
(1 − t)|ξ1 + t(ξ2 − ξ1)|p−2 dt

� p|ξ2 − ξ1|2L(p)(|ξ1|p−2 + |ξ2 − ξ1|p−2)

� p|ξ2 − ξ1|2L(p)|ξ2 − ξ1|p−2,

where the constant L(p) depends solely on p. Assertion (ii) is proved.
Now we assume 1 < p � 2. We note that

|ξ1 + t(ξ2 − ξ1)|p−4((ξ1 + t(ξ2 − ξ1)) · (ξ2 − ξ1))2 � |ξ1 + t(ξ2 − ξ1)|p−2|ξ2 − ξ1|2.
Then

p(p− 2)|ξ1 + t(ξ2 − ξ1)|p−4((ξ1 + t(ξ2 − ξ1)) · (ξ2 − ξ1))2

� p(p− 2)|ξ1 + t(ξ2 − ξ1)|p−2|ξ2 − ξ1|2

and
f ′′(t) � p(p− 1)|ξ1 + t(ξ2 − ξ1)|p−2|ξ2 − ξ1|2.

Therefore, the following relation holds true:∫ 1

0
(1 − t)f ′′(t) dt � p(p− 1)|ξ2 − ξ1|2

∫ 1

0
(1 − t)|ξ1 + t(ξ2 − ξ1)|p−2 dt

� p(p− 1)|ξ2 − ξ1|2(1 − c)
∫ c

0
|ξ1 + t(ξ2 − ξ1)|p−2 dt

for any 0 < c < 1. Since |ξ1 + t(ξ2 − ξ1)| � |ξ1| + |ξ2| for any t ∈ (0, c), we assert
that ∫ c

0
|ξ1 + t(ξ2 − ξ1)|p−2 dt � c

(|ξ1| + |ξ2|)2−p
.

Assertion (iii) of the lemma follows. Lemma 5.1 is proved.
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