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We study the asymptotic behaviour of solutions to a quasilinear equation with
high-contrast coefficients. The energy formulation of the problem leads to work with
variable exponent Lebesgue spaces LP<() in a domain 2 with a complex
microstructure depending on a small parameter €. Assuming only that the functions
pe converge uniformly to a limit function pp and that pp satisfy certain logarithmic
uniform continuity conditions, we rigorously derive the corresponding homogenized
problem which is completely described in terms of local energy characteristics of the
original domain. In the framework of our method we do not have to specify the
geometrical structure 2. We illustrate our result with periodical examples, extending,
in particular, the classical extension results to variable exponent Sobolev spaces.

1. Introduction

A key feature of this paper is the study of variable exponent Lebesgue spaces. In
what follows, we briefly give some motivations and references. In 1931, W. Orlicz [15]
was the first to define variable exponent Lebesgue spaces. Very recently, V. V.
Zhikov [19] proposed the study of variational problems with non-standard growth
and coercivity conditions. At the same time, progress in physics made the study of
fluid properties of electrorheological fluids an important issue, used, for instance, in
robotics and space technology. As emphasized by W. Winslow in 1949, the viscosity
of such fluids in an electrical field is inversely proportional to the strength of the
field. The field induces string-like formations in the fluid which are parallel to the
field. They can raise the viscosity by many orders of magnitude. Thus, the mechan-
ical properties of electrorheological fluids, and especially the Winslow effect, can be
modelled using variable exponent Lebesgue and Sobolev spaces, LP(-) and wtp(),
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Roughly speaking, the energy of electrorheological fluids is calculated by minimizing
the Dirichlet energy integral [ |Vu(x)[P®) dz, where p describes the characteristics
of the material as a function of the electric field. For some mathematical results
on the problem we refer the reader to [2,17]. More recently, a new application
of variable exponent Lebesgue spaces to image restoration was proposed by Chen
et al. [9]. They minimize the energy [ |Vu(z)|P®) + Au(z) — I(z)|? dz, where the
input I is the true image corrupted by some noise. For classical image restoration,
the power p = 2 corresponds to isotropic smoothing, whereas p = 1 gives total vari-
ation smoothing. In [9] the exponent varies between these two extremes to control
the defaults of both procedures: the isotropic smoothing destroys all small details
from the image, while total variation smoothing creates edges where there were
none in the original image.
We study the asymptotic behaviour of solutions to a quasilinear equation of the
form
— div(K. (z)|Vus [P @ 2T + [uf 7@ 720 = g% (z), z € 0, (1.1)

with a high-contrast coefficient K.(z). Under the assumption that the functions
pe(x) converge uniformly to a limit function po(z) and that pg satisfies certain
logarithmic uniform continuity conditions, it is shown that u® converges, as € — 0,
to the solution of a homogenized equation whose coeflicients are calculated in terms
of local energy characteristics of the domain £2¢. The equations that we consider here
arise, for example, from compressible flows in porous media, and non-Newtonian
flow through thin fissures. The homogenization problem is closely related to the
so-called double-porosity models widely discussed in the mathematical literature
(see, for instance, [13]). The linear double-porosity model was first studied in [6].
Nonlinear models were treated in [10,16]. Then a general non-periodic model and
a random model were considered in [7] and [8], respectively. Instead of the above-
mentioned geometrical assumptions, we follow the approach introduced in [14] and
impose conditions on the so-called local energetic characteristics associated with the
boundary-value problem (1.1). These characteristics include a penalization term.
We turn back to usual geometrical assumptions in the last section of the paper by
illustrating our result with periodical examples. A key step is here the construction
of an appropriate extension operator from the fracture part to the whole domain
2. This construction extends the classical result of [1] to variable exponent Sobolev
spaces.

2. Statement of the problem and the main result

Let 2 = .QJ’% U £2¢, be a bounded domain of R™, n > 2, with Lipschitz boundary
0f2. In what follows, ¢ is a small positive parameter characterizing the microscopic
length-scale. Here {{27, } .0y is a family of open subsets in 2. We assume that the
set £2¢ is distributed in an asymptotically regular way in (2, i.e. for any ball B(y, r)
of radius 7 centred at y € 2 and sufficiently small € > 0, ¢ < gg(r), the set 22,
satisfies B(y,r) N 25, # @ and B(y,r) N 2§ # @. We will assume, for the sake of
simplicity, that 25, N 02 = @.

REMARK 2.1. In the framework of the method presented in the paper we do not
specify the geometrical structure of the set (2;,. Generally speaking, it may consist



p-Laplacian in high-contrast media 497

£
!Jf
e ® o
a8 .‘
® 20 o
s o
\__// “ r

g —
m

Figure 1. The sets {27, and 25.

of N, N. — 400 as € — 0, small isolated components such that their diameters
go to zero as ¢ — 0 (see figure 1) or it may be defined as fibres becoming more and
more dense as ¢ — 0 such that the diameters of the fibres go to zero as ¢ — 0.

We consider growth functions in the class B described below. First we recall
that a function p = p(z) defined in the domain {2 satisfies the log-Hélder continuity
property if, for any = € 2, y € (2,

ple) ~p)] < wlle— ) with T w(rm (1) <c.

where C'is a constant. This property was introduced by Zhikov to avoid Lavrentiev
phenomena [20]. A sequence of functions {p. }(.>0) is said to belong to the class 3
if it possesses the following properties.

(A1) For any € > 0, there exist two real numbers p~ and pT such that the function
pe is bounded in the following sense:

1<p” <pZ =minp.(z) < pe(z) < maxp.(z) =p < pt <+oo in 2.
zes? e
2.1)

(A2) For any € > 0, p. satisfies the log-Holder continuity property with the corre-
sponding function wy,_.

(A3) The function p. converges uniformly in {2 to a function py, i.e.
li — 7 = 2.2
lm lpe — pollc(a) =0, (2.2)
where the limit function pg is assumed to satisfy the log—Ho6lder continuity
property.

Note that the constant sequence {Po}(c>0) belongs to the family 3.
Let o € C(£2) be such that

(A4) there exist two real numbers ¢~ and o such that the function o is bounded
in the following sense:

0<o” =mino(z) <o(z) <maxo(z) =0t < minM n 2; (2.3)

zEN zeR zef2 m — po(z)

(A5) the function o satisfies the log-Holder continuity property.
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In what follows, we refer to [5] (see also the references therein) for the properties
of Sobolev spaces with variable exponents. Here LP=()(£2) denotes the space of
measurable functions ¢ in {2 such that

def ©
Ty (),0(8) = /Qlcb(x)l”i( ) dz < +oc. (2.4)
This space endowed with the norm ||| zr-) (o) = Inf{A > 0: 7, () o(¢/A) < 1} is
a Banach space. Following [5], for any ¢ > 0 we define the Sobolev space with
variable exponent p., WP<()(£2) by

WO (2) = {9 € L-0(2): [Vo| € 0 (9)).

The space W01 P (')(Q) is the closure of the set C§°(f2) with respect to the norm
of WP()(2). We recall the well-known embedding result for Sobolev spaces with
variable exponents. Namely, if p and g are continuous functions in {2 and

7p($)n if p(z) <n
1< q(e) <supa(e) < (@) with pre) A n—p@) AT o)

+00 if p(z) > n,

then the embedding Wol’P(')(Q) < L90)(£2) is continuous and compact.
Let us now define the variational problem under consideration. To this end, we
consider the functional J& : WP<()(£2) — RU {+o0},

def /(ZFE(x,u,Vu)dx if w e Whe()(0),

Ju] = (2.6)
400 otherwise,
where
def 1 . def K ()
E def pe(z) o = |,l0@) _ € h ot e
E(x,u,Vu) %5($)|VU/‘ + U($)|U| g (JT)U, wit %8(x) ps(x)
(2.7)
Here the function ¢° is defined by
def
9" (x) = 15(x)g(x), g€ C(N). (2.8)

We denote by 17, the characteristic function of the set (27, k = f, m. Function K.
is a measurable function in {2 such that

(K1) there exists a real number kg such that 0 < kg < K.(x) < kg * in 2%;

(K2) for any e > 0 there exists a real number k. such that sup, ¢ ge Ke(x) = ke >0
and k. — 0 as e — 0. '

We consider the following variational problem:
JE[uf] = min, u® € Wy (). (2.9)

It is known from [5] that there exists a unique solution u® € W™ <)(02) for each
€ > 0 of the variational problem (2.9).
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We aim to study the asymptotic behaviour of the family {u®} as € — 0, bearing
in mind that the geometry of 2 = 25 U ¢, depends on €. So we have to specify
this geometry. Most of the papers dealing with homogenization assume that 2 is a
periodic repetition of a standard cell. This classical periodicity assumption is sub-
stituted here by an abstract one covering a variety of concrete behaviours, including
periodicity and almost periodicity. We thus make the following assumptions:

(C1) the local concentration of the set {2 has a positive continuous limit: that is,
the indicator of {25 converges weakly in L?(£2) to a continuous positive limit.
This implies that there exists a continuous positive function p = p(x) such
that

lim lim h™" meas(Kj; N §2}) = p(x)

h—0e—0
for any open cube K centred at = € (2 with lengths equal to h > 0;

(C2) for any {pe}(>0) C B§, there is a constant C),, > 0 such that, if the function
p; is defined by p}(z) = p.(z) — Cp. in {2, then

(i) the sequence {pX} >0y belongs to P§, that is lim. o C), = 0;

3

(ii) there exists a family of extension operators
Pe - W17p2(<)(91§) — WO ()
such that, for any v € Wl’ps(')(.@;),
Pt =0 €05 and [P lyuncoga) < B0 oo ap)

where & = @(t) is a strictly monotone continuous function in R* such
that ¢(0) = 0 and &(t) — +o0 as t — +oo.

REMARK 2.2. Condition (C2) in the case when p. = p € R is well-known in the
mathematical literature (see, for example, [1,3,11,14,16]).

We also impose several conditions on the local characteristic of the set (25 and
2%, associated to the functional (2.6). Let K7 be an open cube centred at z € 2
with lengths equal to h, 0 < ¢ < h < 1. We introduce the following functionals.

e The functional c;’:_) associated to the energy in (25 is defined in £2 x R™ by

¢y () inf (322 ()| V0 ()P )
‘ vS KNS

F RO () — (@ - 2,@) P de, (2.10)

for z € 2, @ € R™, where -y is a given positive real number, and the infimum is
taken over v* € lepf(')(Kﬁ N §2%). The scalar product in R" is denoted here

by (7)
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e The functional b; h‘ associated to the energy exchange between the sets (27
and (25, is defined in {2 x R™ by

c,h . def e () 16( ) eo‘(m)
bp5<_)<z7ﬂ>1nf/1<i( @Turp + 22

AT et g0 ) ar, @1)

for z € 2, § € R, the infimum being taken over w® € Wl’pa(')(Kﬁ).
We assume that the local characteristics of §2 are such that

(C3) for any = € 2 and any @ € R"™, there is a continuous function A(z,d) and a
real number v = 70, 0 < 7o < p~, such that, for any {p:} >0 C 85,

hneh hnah

(z,d) = Az, d); (2.12)

i, S B e (@) = Jim B

(C4) for any = € 2 and any 8 € R, there is a continuous function b(z,3) and a
real number v = 1, 0 < y; < p~ such that, for any {p.}>0) C B,

s T 1 —ni&h npe,h _
Jim T b () = Jim i B (0 6) = b ). (213)
REMARK 2.3. It is crucial in conditions (C3) and (C4) that the limit func-
tions A(z,d) and b(z, ) do not depend on the particular choice of the sequence
{p<}(e>0) C P§. We prove in the last section of the present paper that these assump-
tions are fulfilled for periodic and locally periodic media.

REMARK 2.4. Contrary to the standard growth setting as considered in [4,16], the
local characteristic b ()(z B) is not homogeneous with respect to the parameter
(B. This induces the appearance of a nonlinear function b(z,w) in the homogenized
functional (see theorem 2.5, below).

The main result of the paper is the following theorem.

THEOREM 2.5. Let u® be a solution of (2.9). Assume that conditions (A1)-(A5),
(K1)-(K2) and (C1)-(C.4) are satisfied. Then u® (the solution of the variational
problem (2.9)) converges strongly in LPO(')(QJ?) to u, which is the solution of the
following variational problem.:

Jhom[t] = min, u € WY (1), (2.14)
the homogenized functional Jyom : Wol’pO(')(Q) — RU{+o0} being defined by

dof /QFo(x,u,Vu)dx ifueWOl’pO(')(Q),

Jhom[u] = (215)

400 otherwise,

where

Fo(z,u, Vu) < Az, Vu) + Uiz;mm) + b(z,u) — g(z)p(z)u. (2.16)
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Moreover, for any smooth function ¢ in {2, we have

1
lim — 7@ 2 (u(z)us — |[uf]?) +
tiy [ (o1~ )

L@ Y e () da
e et

:/ b(z,u)((z)dz. (2.17)
7

The paper is organized as follows. In the next section we prove that the homog-
enized problem is well-posed. The convergence process is rigorously studied in §5
using auxiliary approximating results previously developed in §4. Finally, in §6, we
check that our assumptions are fulfilled by periodic (or quasi-periodic) geometries
and we explicitly compute the limit functional.

Notational convention. In what follows C,C1,C5, ... are generic constants inde-
pendent of e. When we deal with the cs’h_ functional we assume that v = ~q is
given by (C3). Likewise, when we deal with the b;’j.) functional we assume that
v = is given by (C4).

3. Properties of the homogenized problem (2.14)

In this section we state the basic properties of the homogenized problem (2.14) and
check its well-posedness. First we study the functions A(z, @) and b(z, 3) defined by
conditions (C3) and (C4), respectively. Then, using their properties, we show the
continuity of the homogenized functional Jyem in the space W1Po()(£2). Finally, we
prove that the homogenized problem (2.14) has a unique solution u € W1Po()((2).

In what follows we make use of Holder’s inequality for Sobolev spaces with vari-
able exponents. Let ¢ € LPO)(2), ¢ € LIO(2) with 1/p+1/g = 1,1 < p~ <
p(z) < p™ < +ooand 1 < g~ < g(z) < ¢g© < +oo. Then

| 19914 < 20 )1l 0 (3.1)
We also recall the following result from the theory of Sobolev spaces with non-
standard growth. Let the function p satisfy the log-Holder continuity property and
1< p™ < p(z) < +oo. Then
min(||¢||’z;(.)(m, ||¢HLP< )(Q)) Tp(')ﬂ(ﬁb) < max(\|¢||‘£;(> H¢||Lp<> )

min(V3/% (0), 732 5(6)) < 18]l 1o () < max(Te/? (6). THE o (6)).

Properties of the function A(z, @) are given in the following lemma.

(3.2)

LEMMA 3.1. Under the assumptions of theorem 2.5 the function A has the following
properties:

() it is convex with respect to the variable d, i.e.
Az, d;) < TA(z,d) + (1 — 7)A(z, d2) (3.3)

foranyx € 2, d; € R, dy € R™, 7 € [0,1], where @, = 7d; + (1 — 7)ds;
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(i) it admits the bound:

|A(z,@)| < Cl@P°®  for any x € 2 and @ € R™; (3.4)
(iil) 4t is locally Lipschitz in the following sense:
Az, 1) — A, d@a)| < C(1+ [a] + |aa|)™ ) — ol (3.5)
for any x € 2, d, € R™, dy € R™.

Proof of lemma 3.1. First, we prove lemma 3.1(i). Let v, v5 and v{ 5 be minimizers
of the functional in (2.10) with @ = @y, d = d2 and @, = 7d; + (1 —7)ds, respectively.
Let v = 0 be given by (C3). By the definition of v ,, for any z € {2, we have

Gled) = [ @IV £ T (o 2, do
Kings

<[ @IV T (o 2,2 do
Kings
(3.6)
where v¢ = 70§ + (1 — 7)v5. It follows from (3.6) that
c;’:?)(z, i) < TCZ;}E.)(Z,dl) + (1 - T)C;;’Z.)(Z,dg) for all z € £2. (3.7)

Lemma 3.1(i) immediately follows from (3.7) and condition (C3).

We turn to lemma 3.1(ii). Let z € £2 and let v° be the minimizer of the functional
in (2.10). Taking w,(z) = (x — 2,d) as a test function in the integral in (2.10) we
obtain

Cg’}z_)(zg C_i) g / %s(x)|Vwa|pa(I) dox = / %E(x)|a‘|pg(a:) dz.
" Kine; K7nos
This inequality, condition (K1) and (2.1) immediately imply that
k—l
CE,h.)(%(j) < 077 |L_i|p5(x) dzr.
P Jrines

We then write

kot kol
CEJE')(Z,C_I:) < = |@|Po@) dz + %/ (|@P=®) — @@ da.
Pe p K7n$s p Kines
Using assumption (A3) we obtain
k71
el (zyd) < 22— @) dz 4 o(1) as e — 0.
pe(*) —
P Jrinns

We infer from this inequality and assumption (A2) that, for sufficiently small ¢ and
any z € (2,

¢l (z.@) < ChMja™® + o(h™) as h — 0. (3:8)

Statement (ii) of Lemma 3.1 immediately follows from (3.8) and condition (C3).
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It remains to prove (iii). Let 7 be defined by

def |01 — d2|
T = T——5 5 5 - 3.9
1+ |d:1| + a2 (39)

The result is obvious if @; = d2. We thus assume that 7 # 0. Let z € (2. Consider

1
the functional c;’gh(_)(z, d1). It can be represented as follows:

c;’gh(')(z7 ) = c;’gh(_)(z, (1 = 7)do + 7(d2 + 7 (@1 — @2)))-

It therefore follows from the convexity result (3.7) that
,h — E,h — ,h — —_ — —
riy(za) < (L=1)ey ) (2,G2) + 76,7 (2,82 + 7 Y@ — ds)). (3.10)

We use (3.8) to estimate the second term of the right-hand side of (3.10). Bearing
in mind (3.9), for sufficiently small £ we have

T (2@ + 7@ — d@)))
@1 — da|
1+ |dy] + |2

< CLA (14 |a@] + |@o)Pe P 7Y a@, — @) +o(h™) ash—0.  (3.11)

< Ch" @y + 771 (@ — )P

Because of (3.8), the term Tc;’:_ (z,dz) is also of order o(h™) as h — 0. Then, from

(3.9)—(3.11), for sufficiently smail €, we obtain

&l (zi) = (2,d2) < Coh™ (14| + |2 ])" )7 @) — @] +o(h")  as h( = o).
3.12

In the same way, one checks that, for sufficiently small ¢,

SR (z,d@) =" (2,d0) = —Coh™ (14 |dy | +|@a|)P°®) Y@, —da| +o(h™) as h — 0.

pe() p-()

(3.13)
Statement (iii) of lemma 3.1 follows from (3.12), (3.13) and condition (C3). Hence,
lemma 3.1 is proved. O

In a similar way we obtain the properties of the function b(x, ). Namely, the
following result holds.

LEMMA 3.2. Under the assumptions of theorem 2.5, function b has the following
properties:

(i) it is convex with respect to the variable (3, i.e.
b(z,B;) < 7b(x, 1) + (1 — 7)b(z, B2) (3.14)
for any x € 2, (B1,52) € R?, 7 € [0,1], where B, =751 + (1 — 7)Ba;

(i) 4t satisfies the bound
|b(z, B)| < €157 (3.15)

for any x € 2 and any B € R;
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(iil) 4t is locally Lipschitz in the following sense:
|b(x, B1) — b(x, f2)| < C(1+ |Br] + |5a)7 71|81 — fa (3.16)
for any x € 2, (B1, B2) € R%.

We now state the continuity of the homogenized functional Jyon, in the space
W) ((2). Namely, we have the following result.

LEMMA 3.3. Under the assumptions of theorem 2.5, for any (u,v) € (WhPo()(£2))2,
the functional Jpom satisfies

|Jhom[u] - Jhom[”“ < L”u - U”lepo(-)(()): (317)

where
L = L(meas 2, pt, 0%, [ullwr.no0 (s [0 1m000 2

Proof of lemma 3.3. Let (u,v) € (W'Po)(2))2. From the definition of the homog-
enized functional Jy,y, and regularity properties of functions pg, o, p, g, we obtain
nom ] = Jhon ] < € [ (4G, V1) = AGw, Vo) + [[uf"®) ~ o]
I?)
+ |b(z,u) — b(x,v)| + |u —v|)dz. (3.18)
We have to estimate the right-hand side of (3.18). For the first term, using (3.5),
we write

/ |A(z, Vu) — A(z, Vv)| dz < C/ (14 |Vau| + |[Vo|)Po @~ Vy — Vo|dz. (3.19)
o 7

To estimate the integral on the right-hand side of (3.19) we apply Holder’s inequality
(3.1) and inequalities (3.2). We obtain

/ (14 [Vu| + [Vo|)Po) 1 [Vu — Vol dz < CLy[[Vu = Vol ooy (), (3:20)
(9]

where

1/qy 1/qf
Ly = max(L,/05 o(1+ [Vul + Vo), 1,00 o (1 + [Vl + Vo))
and 1/po + 1/g0 = 1 with 1 < g7 < qo(x) < ¢i . In a similar way we estimate the
second, third and fourth terms on the right-hand side of (3.18). We obtain the
desired inequality (3.17). Lemma 3.3 is proved. O

We end this section with the existence result for the variational problem (2.14).

LEMMA 3.4. Under the assumptions of theorem 2.5 there exists a unique solution
u € WHPo()(0) of the variational problem (2.14).

Proof of lemma 3.4. The existence of the minimizer to the functional (2.15) is a
consequence of the proof of theorem 2.5 presented in §5. The uniqueness of the
solution of the homogenized problem (2.14) immediately follows from the strict
convexity of the homogenized functional Jyp,. Lemma 3.4 is proved. O
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4. Auxiliary results

In this section we construct a convenient approximation for the solution of the varia-
tional problem (2.6) in the subdomains {27, and £25. Of course, writing ‘convenient’,
we have in mind ‘convenient for the passage to the limit ¢ — 0’.

We use the following notation. Let {x®} be a periodic grid in {2 with a period
h =h-— h1+7/"+, e h<1, 0<~v< p . Let us cover the domain {2 by cubes
K of length h centred at x®. With this covering we associate a partition of unity

{¢a}:
0 < palx) <1, valz) =0 for z & K,

valz) =1 fora:EKﬁ‘\UKg,
BF#o
Zgo(,(x) =1, Voo ()| < Ch /P for z € Q.

We also denote by K}, the cube of length h’ centred at the point z® and we set
Iy = K \ Ky,
We begin with the following result of approximation in (27,.

LEMMA 4.1. Assume that the conditions of theorem 2.5 are satisfied. Then, for each
h > 0, there exist a set BS" C 25 and a function yeh € Whp()(0) such that

(i) 0K<YS"(2) <1 in 2 and YoI(z) =1 in 25\ B,
(i) Tim._omeas BE" = O(RY/(PTHDY as b — 0;
(iii) for any function w € C}(£2), we have, as h — 0,

T 1
i [ (el y e o)+ oyt ) da
e=0 Jo O’(I‘)

</Q(b(x,w)+§((g|w|"($)> dz +o(1). (4.1)

Proof of lemma 4.1. Let we™" be a minimizer of the functional in (2.11) with z = 2
and § = B, = w(z®). It follows from condition (C4) that

_— . 17 .
lim (%E(x)|Vw§’h|pf(l) + m(gg)wa’hr’(l)) dz = O(h") as h — 0, (4.2)

e=0 /o oz

im hPe@ st — B, P dz = O(h"Y) as h — 0. (4.3)

=0 kpnas

Furthermore, due to conditions (A1) and (C4),

N 1¢
lim (%E(x)|Vw§’h|pf(w) + m () wfvh|0<w>) dz =o(h") ash—0, (4.4)

e=0 /g o(x) °

lim hPe@ st — B, [P dz = o(h"FY) as h — 0. (4.5)

=0 mpnas
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Moreover, the minimizer wg" of functional (2.11) is bounded. Namely,
lwSh| < |Ba] in K.
Now, for any cube Kj' we introduce the set
B E (o € Kjt+ [u" (x) — falj(a)] > hPT/PT /01D

and the function

1 in K}?Q(Q?\Bg’h),
w57h(x) def wzvh — hpi/P++'Y/(p++1) . BE,h
o VT B, D one e/t T Ta
0 in K& (s, \ BEM).

(4.8)

Note that in the non-trivial case 8, # 0, we can choose sufficiently small A to ensure

that B, — 2hP /P +7/(PT+1) £ 0. Then we set
B Lt 0 05,
It follows from condition (C4) and (4.7) that
Tim meas B = O(h"+7/(p++1)).
e—0

Indeed, we have the following relation:

€ xr 18’”’7/ € (e ‘L
o) = [ (lalvugtpr + g
h

+ h—ps(z)—'yl?(x”wgh — 51%@)) dz
>h P 7 /@Zﬁ lwsh — BIP=(*) da:
S B / (W /P D) g
feoh

> hP YRR P/ (P heag P

= /= (/(PTH) meas BEH.
It also follows from definition (4.8) that

0< w5 (z) <1 in KP.

Moreover, we note that condition (C4) implies

(z) 17 ( ) Aeha(:r:

e—=0

Tim ( @)V
K},

(4.9)

(4.10)

(4.11)

+h pe () 'yls( ) Batis — ﬁ|Ps(z)> dz < h"b(z%, Ba) + o(h™)

(4.12)
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as h — 0. Now we are in a position to define the desired set BS" and the function
Yeh, We set

Beh B and YO(2) B a5 (2)pa(). (4.13)

«

Assertion (i) of the lemma immediately follows from (4.11) and definition (4.13).
Assertion (ii) follows from estimate (4.10) and definition (4.13). Finally, using con-
ditions (C1), (C4), estimates (4.2)-(4.5), the definition of the function @%" and
estimate (4.12), we prove assertion (iii). Lemma 4.1 is proved. O

The second step of the approximation process is the following lemma.

LEMMA 4.2. Let the conditions of theorem 2.5 be satisfied and let BS" be the set
defined in lemma 4.1. Let w € C}(£2). Then there are a set D" C 2 and a function
veh = veh( w)y € Wh=()(2) such that

(i) Bs" ¢ D" and lim._,o meas D" = o(1) as h — 0,
(ii) maxzeq |[VE"(z) — w(x)| < Ch,

(iii) the following relations hold true:

lim s (z)|[VVErP@) dg = 0(1)  as h — 0, (4.14)

e=0 Jpe,nyge

m

lim %E(x)\VVE’hFEmdxg/ A(z, Vw)dz +o(1) ash—0. (4.15)
e—0 _Q? 0

Proof of lemma 4.2. Let {p.} >0y be a sequence of P§ such that, for any = € £2,
Pe(x) — Cp, = pe(z), where Cj,_ is the constant defined in condition (C2). Due to
condition (C2), there exists a family of extension operators P¢ : Wl’pf(')(()}i) —
WhP=0)(£2) such that Pv® = v° in £25 and || P<0% |[y1e () < Cllo*llw 5.0 ()
for any v° € Wl’pe(')(ﬁj‘i).

Let v5" be a minimizer of the functional

h .
oy (%, )

K. 5o (2 5 L\ (x
—int [ (B e )P ) d,
USRS pe()

(4.16)

where v > 0, the infimum is taken over v® € W1P=()(Kg N 25) and do = Vw(z®).
It follows from condition (C3) that

/ KE(.’E) |vvi,h
K

atel pe()

Pe@) dz = O(h™)  as h — 0, (4.17)

/ hPe@ el (g — 22, @,) [P dz = O(h"T7) ash—0,  (4.18)
KpnQs
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/ K. (93)‘v ShPe@) dz = o(A")  ash—0,  (4.19)
bopdatel Pe(x)

/ hPe@ St — (1 — 2% @,)[Pe®) dz = o(h"F7)  as h — 0. (4.20)
pN0s

Since v5" is a minimizer of (4.16), then we have
< h. 4.21
rggx S (z)| < h (4.21)

Let us now introduce the function W& = W="(z) defined by

weh( )+ Z (x —x%,d4))pa(x) forall x € £2. (4.22)

The function We" is constructed such that it belongs to W1P<() (£25) and it satisfies
the bound:
max |[W"(z) — w(z)| < Ch. (4.23)
TENS
In addition, using estimates (4.17)—(4.20) and bearing in mind that w € C}(£2), we
obtain

— K.
lim (@ >|VWE hPe(@) qg < / Az, Vw)dx +0o(1) as h — 0. (4.24)
=005 Pe(z) 2
Setting
Ush = weh —q, (4.25)
we infer from (4.23) and (4.24) that
Hé%)g |US"(z)| < Ch  and HU‘E’hHWmsa(.)(Q;) <C. (4.26)

Now, using the extension operator defined in the first lines of the present proof,
we claim that there exists a function U= € W'P=()(£2) such that

U"(z) = US"(z) in 023, mea(>2<|U6’h(z)| < Ch and ||UE’hHW1,pE(.>(Q) <C
(4.27)
We also recall that the set BE" defined in lemma 4.1 satisfies

[im meas B! = O(hw/(”hrl)) as h — 0.
e—0

Thus, following the ideas of the proof of [14, lemma 4.4, ch. 4], we assert that there
exist a set D" and a function US" such that US" = USh in 2 \ D", satisfying
the following properties:

€h < .

gleag\U (z)| < Ch, (4.28)

1T [ wrimer () < C (4.29)

B c DM and @Jmeas DM =0(1) as h — 0, (4.30)
e—

||U€’h||W1,pE(-)(Ds,h) —0 ash—0. (431)
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Finally, we define the function V" by

Veh —w+ U™ in 0. (4.32)

Let us show that the function V=" and the set D=" satisfy all the assertions of
the lemma. Assertion (i) immediately follows from (4.30), while assertion (ii) is a
consequence of the definition of the function V" and (4.28). It remains to prove
assertion (iii). Relation (4.14) immediately follows from the definitions of the func-
tions K. and V" and equations (4.30) and (4.31). Let us prove inequality (4.15).
We write

/ s (x)|[VVErP@) dg
27

= / s (z)|[VVEr P dg 4 / s (z)|[VVErP@ dg (4.33)
QF\ D=k

‘Ds,h
B /A’ZE\D K %6(:6)|V o
FAD

The second term on the right-hand side of (4.34) is o(1) as h — 0 because of (4.30),
(4.31) and definition (4.32). Consider the first term on the right-hand side of (4.34).
It can be estimated as follows:

/ %E(x)\VWE’h
Q5\Deh

Pe(®) dg + / s (2)|[VVERP@) . (4.34)
Ds,h

K (z)

25 P ()

pe(T) qp < ‘VWEJI|135(4L’) dz + Ie7h7

where

I&h:/ Ks(x)< ! IVWehpe() _ _ 1 |vw€’h|ﬁe(w>) dr.  (4.35)
Q5\Deh pe(z) Pe(z)

Because {pc}e>0) C PB§ and {pc}>0) C PG, we note that p. — p. converges
uniformly to zero in C'(£2). We therefore have

b < ko—l/ < 1 ‘VW55h|pa(z) - 1 VWE¢h|ﬁ£(z)) dr — 0
(5\D=r)neY" pe(z) Pe(z)

ase — 0, (4.36)

where

S

E(z)>1/(ﬁa(x)—pa(r))}
e (2)

Now inequality (4.15) follows from (4.24), (4.34)—(4.36) and (4.14). Lemma 4.2 is
proved. O

oy = {x €N VW (z)| < (

S

We now use the following notation. Let {p}}.>0) C PG be the sequence of func-
tions defined in condition (C2). We consider the sequence {m} .~y C P§ defined
by

72 (x) = min{pi(z),po(z)}, =€ Q. (4.37)
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It is clear that {7} >0y C Pj and, moreover, that
m(r) < pi(x) <pe(x) and wl(z) <po(r) in £

The next lemma gives an auxiliary result which will be used in the proof of the
lower bound (see § 5.2 below).

LEMMA 4.3. Let the conditions of theorem 2.5 be satisfied. Assume that a sequence
{u}e>0) C Wy Lpe( )(Q) converges to a function u € CL(£2) in LPO()(Q":) and,
moreover, that

1
1% ()2 ()| Vu© pe(@) 4~ |yf “(z)> dx < C. 4.38
[ (si@ptaywu = + (439

Then there exist a set G5 C 2 with (2, C G°, a function 4° and a subsequence
er — 0 (still denoted by € for convenience) such that

(i) lim._,o meas 9; =0, where §5 =GN QJi,

(i) @° = w® in 25\ G} and, moreover,

;ig(l) ||125||W1,7r;(.)(9;) =0, (4.39)
(iii) the following inequality holds true:

: e|mli(z) 1?71(55) elo(x)
lim 2o ()| Vus|Te W) 4 21 |f) de > | b(z,u)dz. (4.40)
Ge 9]

e—0 o(x)

Proof of lemma 4.5. Let u% be the restriction of the function u® to the domain £25.
Due to condition (C2), the function P*u§ = U} € Whrz()(02) satisfies in partlcular

HU;HWLW;(-)(_Q) < C7 (4.41)

because the function 7} defined in (4.37) is such that 7} < pf in £2.

Since {u}(.>0) strongly converges to the function u in the space LpO(')(QJi),
there exists a set G° such that meas G° — 0 as ¢ — 0 and the sequence {u®} >0
converges to u uniformly in the domain 27 \ G° and

sup |Uj —u|=p. with o. = 0ase— 0. (4.42)
025\Ge

We set
‘} =GN QJ‘%.

Following the ideas of the proof of 114 lemma 4.4, ch. 4], we show that there exist
a set G6 and a function 4° € W ()(.Q) such that G5 C G, 4 = uf in 25 \ G<,

. Ne . ~g N .
Ehg(l) meas G5 =0 and Ehj% Ik HWLﬂ;(.)(G;) = 0. (4.43)

Now we set
G =10, U G; and 9; =GN ch (4.44)
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The sets §°, §7 and the function 4° satisfy lemma 4.3(i) and (ii). Assertion (iii)
remains to be proved. To this end, let us introduce the function

(x) if |4°(z) — u(x)| < o,
U () = S u(w) + o if 4°(x) > u(z) + e, (4.45)
u(z) — o i 4°(z) < u(x) — .
The function U¢ belongs to W™ ()(£2) and

|U®(z) —u(x)] < oo with oo >0ase—0, z € {2 (4.46)

We set,
Ut =u® - U*® (4.47)

and consider the functional

er. g1 def e|mi(x ( el|o(x
I[u]:/i( ()| Va7 @) (I)) <>>dx. (4.48)
Since §° = 27, U §3 and U(z) = 0 in 25 \ §3, we have

16 [u€]

- (),

f

- (/ s ()| Vs |7 @) dx—/ s () |V UE|™ @) dx)
€ 95
f

f

@V dr s [ (@@ s o) g
o o o(2)

f

+ (/ %g(I)|vu5|7r2(I) dx —/ %5(1')|V(U6 . [78)'7{';(9:) dl’)
€ SE
f

f

(z)|VUe | ) dx—l—/fn( st ()| V| ) 4 (()>| 5|"($>> dx)

©hi 4. (4.49)
Consider the first term on the right-hand side of (4.49). First, for any £ > 0 we define
the set 2 C 2 by 2 = {z € 2 : |u(x)] > 2¢}. Let us cover 2 with cubes K
of length h centred at 2®. Because of (4.46), for ¢ and sufficiently small h we have
|U¢] > ¢ in K}?’g. Following the lines of the proof of [4, (6.29)], for x € £} N K,?’E
we have

<U/ >
C =~

_ 1 VUsﬂ x
k01A2<1+hP+>| ()||UE|TL(I, (4.50)

w2 (x)
e ()| U7 )
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where A; and A, are positive constants independent of €, § and M. In a similar
way, for z € 25, N K[ we have

(14 AyhP /P =D 50 ()| Vs |7 @)

(&)

w2 (x)
e|ms(x) |VUE|
— kA (1 + )| | i (4.51)

. 7! (2)
e ()| UF =)

where k. is defined in condition (K2). Now we make use of the strong convergence
of the sequence {u®}~0) to the function u in the space L”O(')(ij) and of the

definition of the function U°. Let

¢ def U
iz
Then, for any Kfj’g, we infer from (4.50) and (4.51) that

fim (/ 2o (2) [V UF |2 @) g
e=0 \JEK; " n02s

* 1¢
+/ <%E(I)|vue7r5(a:)+m(x)|u6|a(m)) dx>
K&¢nge, o(x)

18
s [ (w0 o) g
e—0J K¢ a'(;;;)

+o(h™) ash —0. (4.52)
Condition (C4) implies that

£

lim ((WW“W+(NJWQ
Kot

e—0 (ZE)
> h"b(z,u(z®)) +o(h™) ash — 0. (4.53)
Now it follows from (4.52) and (4.53) that

™M —

im 4] > b(z,u)dz. (4.54)

0 2

Taking into account the definition of £2- and passing to the limit as ¢ — 0 in (4.54),
we obtain

lim 4§ 2/ b(z,u)dx. (4.55)
e—0 2

Let us now estimate from below the term 45 in (4.49). We argue as follows. Using
the definition (4.45) of the function U®, we obtain

3] < C’/ (|VuE ™=@ — |V (uf — U%)|" @) dz
9%

U,

@) V(0 — )| @) da
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<O | |Vaul(|VuE [ @1 4 | vy @1 dg,
S%

Since u is a smooth function in {2 we conclude that

lis| <C | 1+ |Vur[™=@ 1) da. (4.56)

f

It is now easy to see that (4.38), the estimate for the measure of the set % (see
(4.43) and (4.44)) and Hélder’s inequality yields

Iim |35 = 0. (4.57)
e—0

Now assertion (iii) of the lemma immediately follows from (4.55) and (4.57). Lemma
4.3 is proved. O

5. Proof of theorem 2.5

We begin this section by obtaining a priori estimates for the minimizer u® of prob-
lem (2.9). Since J¢[uf] < J°[0] = 0, by virtue of the regularity properties of s, o,
9%, (3.2) and Young’s inequality, we can show that

||UEHWLP€(-)(QJ€) <C. (5.1)

It follows from (C2) that there is a function v® = P°u® such that u® = u® in 25
and

HUEHWLPE(‘)(Q) < C. (5.2)

Moreover, the definition of the function p. which converges uniformly to py implies
that there exists a parameter ¢ that does not depend on € and such that

||UE||W1,P0<~%<(Q) <C (5.3)

and the family {v°}.~) is a compact set in the space LPo®) (£2). We can then extract
a subsequence (still denoted by {u°}) which converges to a function u € LPo()(2).
In particular,

ut = in LPO(05). (5.4)

Let us show that u is the solution of the homogenized problem (2.14). The proof
will be done in three steps. In §5.1 we prove that

Tim J#[uf] < Juom[w] for any w € WHPoO) ().
Section 5.2 is devoted to the proof of the inequality
Tim J 1] > Jrom[11]:

It follows that w is the minimizer of functional Jyom in Wg P 0(')((2). We conclude
by studying the convergence in the matrix part (27,. Indeed, we prove the weak
convergence of

1 1
17, (ual”(')‘z(uu‘f — ) + Iual"(‘)>
DPe g

to b(-,u) in §5.3.
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5.1. Step 1: upper bound
The aim of this section is to prove that
lim J¢[uf] < Jhom[w]

for any w € WPo()(§2). We first state the result for an arbitrary function w €
C3(92). Let Y& Ve and D=" be the corresponding functions and set defined in
lemmas 4.1 and 4.2. We define the function 75" € WtP<() () by

T (z) € yoh(z)Veoh(z), = e (5.5)

We first prove that -
lim lim J¢[T%"] < Jhom|[w], (5.6)

h—0e—0

where we recall for the convenience of the reader that

JE[Teh] = /Q (%g(x)|VT5’h|p5($) + ﬁm)h (@) _ ga(x)TE7h> de,  (5.7)
w| = z, Vw Mw”(:‘”) z,w) — g(x)p(x)w | dx
hmlt] = [ (A, V) + 2810l 4 bl 0) g0l ) . (55)

Consider the third term in (5.7). It follows from condition (C1), the definition
(2.8) of the function g°, assertions (i) and (ii) of lemma 4.1 and assertion (ii) of
lemma 4.2 that

i Ty [ @7 @) do = [ gla)plaoe)da. (5.9)

Consider the second term in (5.7). We write it as follows:
1 1 1
/ 7|T8,h o _ / 7|y6,h|a|w|o dz +/ 7‘ya,h
o o fod)
It follows from assertion lemma 4.1(i) and lemma 4.2(i) that

[E— 1
lim lim —
h—0e—0 [ o(T)

U(‘Va’h

7 —|w|?) dx.

|Y5,h|a(z)||ve,h|o(ac) _ |w‘o(z)| dz = 0.

We thus write

1 1 o
/Q;|T5’h\”:/Q;|Y‘f’h|"|w|"dx+jf’h with Iim lim [55"] =0.  (5.10)

h—0e—0

Using §2 = ({25 \ DM U (D N $25) U {27, we rewrite the first term in (5.7) as
follows:

/ %E($)|VT6’h
2

:/ s () |V VP d$+/ s ()| VTR P @ dg
25\ D=1 Deh 025

P<(@) qg

+ / s ()| VTP (@) dg, (5.11)
2

€
m
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Because of inequality (4.15), the first term on the right-hand side of (5.11) is such
that

lim lim s ()| VV P @) dg </ A(z, Vw) dz. (5.12)
h—0e—0 Q;\Da,h (9}

Consider the second term on the right-hand side of (5.11). Using
|VTe,h|pE(:1:) _ |V5,hvys,h|p€(:v) + (|VT€,h|pE(z) - |VE’hVYE’h|pE(I)),
we rewrite it as follows:

Pe(@) _ |y (z)[P=(®)) da:

[ s@vrstp@a= [ ey e
PDeh PDe,h
+/ e () (VTP | yehgyehp@) dg
f_DE,h
+/ st (2)|w(z) VY S P dg, (5.13)
f_Ds,h

We now study the first term on the right-hand side of (5.13). It follows from
lemma 4.1(iii), lemma 4.2(ii), Holder’s inequality and (3.2) that

lim lim s () |[VY S|P @) |70 P (@) _ ()P @] dzz = 0. (5.14)
h—0e—0 [pen

In a similar way, for the second term on the right-hand side of (5.13), from lem-

mas 4.1, and 4.2(ii), Holder’s inequality and (3.2) we obtain

lim Tim s (z)||VTEh P —|yshgyshpe@)| 4z = 0. (5.15)
h—0e—=0 [pe,n

Using the same decomposition of |VT5’h|T’E(’J) as in (5.13), we write the third term
on the right-hand side of (5.11) as follows:

J,

P~ @) ) da

s ()| VTP dg = / s ()| VY SR pe@) ([yeh
(9]

€ €
m m

+/ s (2) (VTR Pe) — |y ehgyh|pe@) qg
+ / s ()| w(z) VY= P @ dg. (5.16)
as,

Using similar arguments to the ones used in the proof of bounds (5.14) and (5.15),
we obtain

T m [ s (@)| VYR Pe@] et pe@) oy (z)P=@)| dz = 0, (5.17)

h—0e—0 Qs

Im lim [ e (a)||VTERP@ — |yehyyshpe@)| 4z = 0. (5.18)

h—0e—0 1o
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Finally, it follows from (5.11)—(5.18) that the first term in (5.7) satisfies

/ 2o (2) [ VT=H P dgy < / Az, V) da + / s (1) [w (@) VY P dg 4 S0
o) 2 2
(5.19)
where limj,_,0 lim._, |j§’h\ =0.
Now inequality (5.6) immediately follows from (5.9), (5.10), (5.19) and assertion
(iii) of lemma 4.1. Since u® minimizes the functional J¢, it follows from (5.6) that

lim J¢[u] < Jhom[w] (5.20)
e—0

for any smooth function w. By density arguments, (5.20) holds for any function
w e Wol’p"(')(ﬂ) as well.

5.2. Step 2: lower bound

The derivation of the lower bound
lim J¥[u7] > Jnom 1]

is done in two main steps. In the first step we introduce an auxiliary functional JZ
and obtain the lower bound for this functional. In the second step we obtain the
desired result for the initial functional J¢.

STEP 1 (an auxiliary inequality). Let {7’}>0) be the sequence of functions
defined in (4.37). On the space W17 () (£2¢) we define the functional

J7WhTO(0°) 5 RU {400}
by setting

* 1 *
. def /(%e(ﬁ)IVUIWE(”)ﬂLiMl”(”—gg(x)U)dx if u e WH0)(02),
= 0 O’({E)
+o0o  otherwise.
(5.21)

The functional J™ is continuous in W7 () (£2¢) and the following inequality holds:
|J7¢ [u) — T [v]| < CLallu = vlly1mz g
for any (u,v) € (WHP0)(2))2, where

1/q5 1/qf
Ly = max(T),/8 o (1+ |u] + [Vu| + [v] + [Vo]), T2/ o (1+ [u] + V| + o] + Vo)),
with the exponent gy = go(x) and the values qgt being defined after (3.20).

Now let u be an arbitrary Cg(2) function and let {u®}(>¢) be a sequence which
converges to the function u strongly in LPO(‘)(.Q;) and such that J™ [uf] < C. We
will show that

lim J7= [u®] 2 Jhom[u]. (5.22)
e—0

We consider a new set of points {#®} in the domain {2 that form a h-periodic

space lattice. Let us cover the domain {2 by the cubes Kj' with non-intersecting
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interiors. We introduce the following notation:
o = {UK;;, Ko (z} 2 = 02\ 2,
(03
05 = 0° N, 05 = 025N .

By construction,

meas 2, = O(h) as h — 0. (5.23)

The functional J™ [u¢] is then decomposed as follows.

J7 [uf) :/ Frx (2, u®, Vu®) dx—i—/ Frs (2, u®, Vu®) du, (5.24)
h §25
where
* 1
Frs(x,u, Vu) = s (x)|Vu|" @ 4 WMU(I) — g% (z)u. (5.25)
o

Consider the first term on the right-hand side of (5.24). It follows from the definition
of g%, from the strong convergence of the sequence {u}~0) to u € C3(£2) in the
space LPO(')(Q;) and from (5.23) that

lim lim Frs(z,u®, Vu®)dz > 0. (5.26)

h—0e—0 Q}g :
Consider now the second term on the right-hand side of (5.24). We have

/ Frx (2, u®, Vu®) d
o)

e
h

* 1
= X [ (@I e - o ) o (520
Koo/ Kine: o(x)

For any « such that K} C 2, the first term on the right-hand side of (5.27) is
/ Frs(2z,u®, Vu) dz = / Frs (2, u®, Vu®) dz
Kgnoe Kgnos

+ / Frx (2, u®, Vu®) dz. (5.28)
Kgnos,

We now apply lemma 4.3 to the sequence {u} ¢y and the function u. So, there

exist an open set G C {2, such that 2, C G° and a function @° that satisfy
lemma 4.3(i)—(iii). We define the function v in {2 by

v® =10° — u(z®). (5.29)



518 C. Choquet

We aim to go back to the functional cfr*h O Bearing in mind condition (A3), we note
that, as ¢ — 0, we have :

/ s ()| Vo™ @) da
Kpnes

K *
/ <0972 @ 4 + o(1)
Kpnes Te ()

K * * *
_ / ( s($) |vvs|7r€(z) + h*’Y*’Ts(m)‘rUE . (1, _ xa7d)|7r5(z)> dz
K§nes

2 (x)

- h_"’/ @ — (2 — 2, @)@ da 4 o(1), (5.30)
Kgnos

where the parameter @ will be specified later. We now study the second term on
the right-hand side of (5.30). It follows from the regularity of the function u and
from assumptions (A1) and (A3) that, for any @ € R and any € > 0, we have

/ e @y — (¢ — 2, @)™ @) da

+ (u(z) — u(z®) — (z — 2%, Vu(z®))) + (z — 2%, Vu(z®) — @)|™ @ dz.

Obviously, for h — 0 we have

lim B @ y(z) — u(z®) — (x — 2z, Vu(z®))]™ @ dz = O(h"+P7). (5.31)

=0 Kkpnns

Now it follows from (5.31) that

lim A @ — (2 — 2, @) @) da
=0 Kkpnns

<CTm (/ B @) 68 () — u(@)| @ da
Kpnos

e—0

+ / K@) (2 — 2%, Vu(z®) — @)™ @ d:c) +O(h"tP7)
Kpns
(5.32)

as h — 0. We set @ = d, = Vu(z®). It follows from the strong convergence of the
sequence {u®} to u in the space LPO(')(Qi) and (5.32) that

lim Y@ — (2 — 2, Vu(z®))[= @ dz = O(h" TP ~7) as h — 0.
=0 Kpnas
(5.33)
Now definition (2.10) and relations (5.30)—(5.33) give
lim s ()| Vo[ @) de > lim ¢f (@, Vu(@®)) — O(h™ P 77). (5.34)

e—0 Ky QQ; e—0
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Due to the definition of the function v%, relation (5.34) means that

lim / s () |Vas )™ @) da
Hoza: Kpn(engs)

hch *() Vu(z®))

e—0

—@kgl/ |Vas|™ @) dz + o(1) as h — 0. (5.35)

e—0

Moreover, due to (4.39), the second term on the right-hand side of (5.35) equals
zero. Finally, we go back to the functional J™. Since 4 = u in £2° \ §¢, we obtain
from (5.35) that

Ehjné I ] > iijné (Z c;’;h(,)(xa, Vu(x®))

+2/W (551017 = o (o )
+/E Fﬁ;(x,uE,Vug)dJL) +o(1) (5.36)

as h — 0. We pass to the limit in the inequality (5.36) first as ¢ — 0 and then
as h — 0. Taking into account the strong convergence of the sequence {u®} .~
to u in the space LPoC )(Qf) the regularity of the function g given in (2.8), the
properties of the function p., conditions (C1), (C3) and lemma 4.3, we obtain the
desired inequality (5.22).

It remains to pass from the result in C§ (£2) to the result in W Po()(£2). Function
7* satisfies 7% < po in £2. Therefore, the family {J™ } is (uniformly in €) continuous
in the W1»o() (£2) topology. In addition, as proved in lemma 3.2, the functional Jyom
is continuous in the W1?0()(§2) topology. Then the fact that inequality (5.22) holds
for any u € C§(£2) implies that (5.22) holds for any u € WOLPO(')(.Q). This completes
the proof of the ‘lim inf’ inequality for the functional J™=.

STEP 2 (lower bound for the original functional). Let w be an arbitrary function
from LPo()(£2) and let {u®} be a sequence which converges to the function u strongly
in L”U(')(QJ%) and such that J¢[u®] < C. First we note that one can prove the
inequality

lim J[uf] > Jhom[u] for all u € Cj(£2) (5.37)

e—0

in the same way as the inequality (5.22). Note that, in contrast with J7 | the
functional J¢ is not continuous in the W1Po() topology unless we restrict ourself to
the case when p. < po. Therefore, the fact that (5.37) holds for any C}-function does
not imply that it is true for any v € W} Lpo(: )( ). So, let u € WHPo() (). Consider
the value

IF[uf] = /Q s () |Vl |7 @) (|Vuf [P =7 (@) 1) dz. (5.38)
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We check easily that

OmBaxl(—B”;(I)(Bpf(’”)_”;(’“') —1)=>C(e) withC(e) >0ase—0  (5.39)
<B<

and

lim J<[uf] > lim 7°[u] + lim J™ [u°]

e—0 e—0 e—0
> lim s ()| VU™ @) (Vs P @~ 1) dz + Jyom|u).
e—=0J{|Vus|<1}nn2
(5.40)
Combining (5.39) and (5.40), we assert that
lim J¥[uf] > Jhom[u] for all u € WP (), (5.41)

e—0
If w is an arbitrary function from VVO1 po) (£2) and {u®} is a sequence converging to
the function u strongly in LP()(£2), then inequalities (5.37) and (5.41) mean that

lim J[uf] > Jhom|u] (5.42)

e—0

and the lower bound is obtained.

5.3. Step 3: convergence result (2.17) in the matrix part

It remains to prove the convergence result (2.17). Suppose that the solution u of
the homogenized problem is a sufficiently smooth function (if not, we use smooth
approximations of u to construct 4°). Let 4° be the function defined in (5.5) with
w = u. Then it follows from (5.20) and (5.42) that

lim J¢[a°] = lim J®[u®] = Jhom[u]. (5.43)

e—0 e—0
It follows that lim._,q Jé[a°] — lim._,o J¢[u®] = 0, that is

1
hm (/ <%s(z)|vﬁ6|ps(m) + 7|,&E|0‘(I) +gs,a5) d.’,E
Q o(x)

e—0

1
— / (%E(J;)|Vu€|”€(z) + 7|u5|"(m) + g€u€> da:) =0. (5.44)
? o(z)

We aim to deduce from the latter relation that
lim [|4° — u®|| o =0. 4
51—%”” U oy ) =0 (5.45)
To this end we make use of the following lemma.

LEMMA 5.1.

(i) Let p = p(x) be a continuous function such that 1 < p~ < p(z) < pT in 0.
Then, for any vectors &1,&, € R™, we have

1 1

p() () PO > (&l&|PO 72, & — &), (5.46)

|£2|p(-) _
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(ii) Let p = p(z) be a continuous function such that 2 < p~ < p(z) < p* in 2.
Then, for any vectors £1,&5 € R™, there exists a strictly positive constant
L =L(p~) such that

1 1

m@‘p(.) B m|§1|/3(-) > (L]GPY7% & — &) + LG — &PV, (5.47)

(iit) Let p = p(z) be a continuous function such that 1 < p~ < p(z) < pt <2 in
2. Then, for any vectors €1, € R™, there exists a strictly positive constant
L =L(p~) such that

1
— & |P(-) -
p() p()
The proof of lemma 5.1 is given in the appendix.
Now we prove the relation (5.45). In view of lemma 5.1 we should consider four
subsets of the domain (2:

1 & — &I

(6] + [€2])27P0)

G [PO > (&Gl PO b - ) + L . (5.48)

def def I~
2% = 02n{x:p(x) > 2}, 2P = 0\ 2,

2T 0z 0@ =2}, 0¥\

However, for the sake of simplicity we assume here that p.,o > 2 in {2. Then we
apply (5.47) for p = p°, & = Vu® and & = Va® and we obtain

L/ %E(w)\Vue—Vﬁan(I) </ %E(x)\Vﬁﬂpf(I)—/ %6(:3)|Vu5\p5(”“')
Q Q Q

—/ K. (z)(|Vuf [Pe®=2Vue Vs — Vue).
2

(5.49)
In a similar way, with p = ¢ we obtain the following inequality:
1 1 1
Ll/ |ue _ﬂelo(x) g/ |ﬂs|a(r) _/ ‘UE‘U(I)
o o) o o) no(x)
- / |7 22 ( — uf) (5.50)
Q

Using (5.49) and (5.50) we obtain

min{L,Ll}/ (J{E([L‘)‘Vue _ Vﬂ5|Ps(9ﬁ) + |u5 _ asla(x))dx
2
< / (zg(x)wa%(” b |a5|"(w>> da
Q o(x)

1
- s (@) |[Vul|Pe®) 4 ——|us ”(x)) dz
[ (@t 4 o

_ / (K. () ([VuE - D290, Ve — V) + [uf |7 =2 (i€ — uf)) da.
(93
(5.51)
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Consider the third term on the right-hand side of (5.51). Since u¢ = @ = 0 on 912,
then we have

/ (K. (2)([VE [P- D290, Ve — V) + [uf 7@ 20 (i — uF)) der
2
= / (= div(K.(2)|Vus [P @ 72V0%) + [uf|7®=208) (a° — uf) da. (5.52)
2

Since u® is the solution of variational problem (2.9), the first term on the right-hand
side of (5.52) is such that

/(— div(KE(x)|vu6|ps<w>*2vu€)+|ua|U<w>*2u€)(vf—uf)dx:/ ¢° () (0 —u) dz.
2 2

(5.53)
Finally, from (5.44) and (5.51)—(5.53) we obtain the desired relation (5.45).
Consider now the functional b;’sh,) (z,5) defined in (2.11). It is clear that the min-
imizer wS" of the functional (2.118 satisfies the Neumann boundary-value problem
for the following equation:

= div (K. (2) Vo [Vws " P=72) 415 (@)l |ws " |72
+pe()h PO (@) (W~ Bl ~ fPITE =0 i Kf. (5.54)

Let us multiply equation (5.54) by (w® — 8) and integrate over the cube K7. We
obtain

/ (K ()| Vg P 15, () w7

h

+p5(x)h*p€(””)*71§(g;)|w5 — BP<@) dz

=4[ 15 (2)wS" w7 @2 dg. (5.55)
KZ

h

Now we represent the left-hand side of (5.55) in terms of the local energy charac-
teristic b;’s(_)(z, B). Using condition (A3), we write

/ (K (2) Vo P 4 15, (2)|ws |7 + pe(2) P77 15 (@) s — 7<) da

h

18
_ / pe(2) (%E(J:)|Vw§’h|p5(z) + M‘w?ﬂo(r)
K; o(x)

+ h_Pf('”)_'yljc(xﬂws — mpa(x)) dz
_|_/ P (I) 1 |we,h o(x) _ 1 |we,h‘a(z) 1€ (:17) dx
K: € pa(m) z 0’(‘%) z m

= po(2)b>" (2 z)|ws e ®) LIRS P x)dz + o(h"™
P o)+ [l (o = 2 1) e ol
(5.56)
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as h — 0. Therefore, it follows from (5.55) and (5.56) that

P 8) = [ s Gust w1 (o) do
KZ

h

+/ M|wi,h|a(w)15m(x) dz +o(h"™) ash—0
K

= o(x)

or

€,h _ 1 Jhyo(x)—2 h Jh2
bl = [ e G L )

1 ,
+/ —— w7 @1E (2)dx 4+ o(h™) ash —0. (5.57)
Kj o(x)

Then it follows from condition (C4) of theorem 2.5 that

1
b(z,B) = lim h™"(e (/ wjh o(z)—2 ﬂwi’h — wi’h 2 1 (x)dx
O B e (T R I

1
+/ —— |whT@1E (2 dx). 5.58
S T wa) 65

Now let ¢ be a smooth function in {2. Consider the quantity:

rlar) ™ [
2,

It follows from (5.58) that

1
( |a5|"(z)*2(uff _ ‘ﬂe‘Q) +

@) @) de
— Sl )<(e) .

oz

e—=0

lim J°[a°] = /Q b(z,u)((z) d. (5.59)

Now the desired relation (2.17) follows from (5.45) and (5.59). This completes the
proof of theorem 2.5.

6. Periodic example

Theorem 2.5 provides sufficient conditions for the existence of the homogenized
functional (2.15) and for the convergence of minimizers of the variational problem
(2.9) to the minimizer of the homogenized variational problem (2.14) under con-
ditions (A1)-(A5), (K1), (K2) and (C1)-(C4). It is important to show that the
‘intersection’ of these conditions is not empty. The aim of this section is to prove
that all the conditions of the above-mentioned theorem are satisfied for periodic
media, and to compute the coefficients of the homogenized functional (2.15) either
in an explicit form or, as is usually the case, by the solution of a corresponding cell
problem.

Let {2 be a bounded domain in R™, n > 2, with Lipschitz boundary. We assume
that, in the standard periodic cell Y = (0,1)™, there is an obstacle M C Y with
Lipschitz boundary OM (see figure 2). We assume that this geometry is repeated
periodically in the whole R™. The geometric structure within the domain {2 is then
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|
M

Figure 2. The reference cell Y.

obtained by intersecting the e-multiple of this geometry with (2, € being a small
positive parameter. Let {#*} be an e-periodic grid in 2. Then we define 22 as
the union of sets M$ C KZ, i =1,2,..., N, obtained from €M by translations of

vectors n
€ Z kj@j,
j=1
that is,
Ns
25, =M and 25 =0\, (6.1)

where K is the cube centred at the point 2 and of length ¢, k; € Z, {ej};’:l is
the canonical basis of R™ and N, — +o0 as € — 0.
Let pg = po(x) be a log-Holder continuous function such that

2 < p~ =minpo(z) < po(r) < maxpy(z) = pt < +oo in 2. (6.2)
€SN €S
Let {pe}(e>0) C PG be a sequence defined by

p(2) < po() + d. (), (6.3)

where the function d. is such that d. = o(1) as ¢ — 0. The asymptotic behaviour
of d. will be specified in convergence theorems below. On the space W1P<()(£2) we
define the functional J& : W'P<()(£2) — RU {+oc},

K 1
def /( s(m)lvulps“ﬁwul"(%’)ge(ﬂf)“> de ifueWhr0(2),
2

Je[u] = pe(x) o(x)
400 otherwise,
(6.4)
where
kf in Q]‘Ep,
K®(x) = (6.5)
EmePo@ in 2 |

the function o satisfies condition (A4) with ¢~ > 2 and (A5), and the function ¢°
is defined in (2.8). Here k¢, ky,, are strictly positive constants independent of €.
Consider the following variational problem:

JE[uf] = min, u® € Wy (). (6.6)

We aim to study the asymptotic behaviour of the solution of (6.6): u®.
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To formulate the main result of this section we introduce some notation. We
denote by u* = u®*(x,y) the unique solution in W;’p 0(')(?) of the following cell
problem:

div,, (ks |Vyu®[Po® =2V, 4% = 0 in F, } @D
6.7
(kf|V,ut [P0 @2, 4 — @, 7) = 0 on IM, y — u®(y)Y-periodic,

where F =Y\ M, 7 is the outward normal vector to OM, and @ € R". We denote
by w” = w?(x,y) the unique solution in W Lol )(M) of the following cell problem:

— divy (knd(2) |V, w? 7@ 27, W) + [w? P 2w = 0 in M, (6.8)
Wﬂ(y) =pon oM, y— Wﬂ(y)’j—periodic.

Note that, in the cell problems (6.7) and (6.8), x is a parameter. Regularity results
for u and w” are thus easily deduced from [12] and [18]. We also introduce the
homogenized functional Jiom : WHPo()(£2) — RU {+oo}:

|, (A V00 + L+ (o)~ g(a)pe) ao

de

Jhom[u] = it u e Wo(0), (6.9)
+00 otherwise.
The following results hold.
THEOREM 6.1. Let u® be a solution of (6.6). Assume that
lim e~4=0) = d(-) (6.10)

e—0

uniformly in §2. Then u® converges strongly in Lp"(')(QJi) to u the solution of the
vartational problem

Jhom[u] = min, wu € Wol’po(')(Q),

where
P L eas 7, (6.11)
= def a _ =po(x)
Alz,d) = |Vyu (z,y) — d| dy, (6.12)
po iU
defﬁ/ (z,y \W T y)\p"(z)72 dy. (6.13)

THEOREM 6.2. Let u® be a solution of (6.6). Assume that, for any x € 2,

lim e~ %@ = 400, (6.14)
e—0
Then u® converges strongly in LPO(')(Q;) to u, the solution of the variational prob-
lem

Jnom[t] = min, w e WP (),
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where p* and the function A(z,d) are given in (6.11), (6.12) and

bla. 5) X B o), (6.15)

THEOREM 6.3. Let u® be a solution of (6.6). Assume that, for any x € (2,

lim e =@ = 0. (6.16)

e—0
Then u® converges strongly in LPo(") ((Z?) to u the solution of the variational problem
Jhom[u] = min, wu € Wol’p"(')(Q),

where p* and the function A(z,d) are given in (6.11), (6.12) and

b(xz,3) = 0. (6.17)
REMARK 6.4. Note that if

K. () = 15ks + 15, kpn e ™),

then theorem 6.1 holds true with d(z) = 1.

The proofs of theorems 6.1-6.3 are similar (with evident modifications) and we
restrict ourselves to the proof of theorem 6.1.

6.1. Proof of theorem 6.1

The proof of theorem 6.1 is made in four steps. In the first step we prove that
condition (C1) is satisfied and compute the function p(z). In the second step we
prove condition (C2), i.e. the extension condition. Then we prove (C3) and compute
A(z,d). Finally, in the fourth step we compute the function b(z, ).

6.1.1. Condition (C1): the function p(z)

Let K} be an open cube centred at z € {2 with length equal to h with 0 < e <
h < 1. It is easy to check that

n

h
meas(Kj; N 25) = - meas(eF) + o(h™) as h — 0. (6.18)
Then condition (C1) is satisfied and the function p(x) = p* € R is given by (6.11).

6.1.2. Extension condition (C2)

Let u® be an arbitrary function from the space lepe(')(.(?;). Taking its restric-
tion to any cell ¢ = K’ \W, we reduce our problem to the proof of the strong
connectedness condition (C2) for the cube K. We map the cell F£ on the standard
domain F =Y\ M by considering the function U® € WP<()(F) defined by

U*(€) = u®(e€ +2™).

We have
/ Vs |P=(®) d:c:zs”/ el=@wue|P=©) q¢, (6.19)
Fe F
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where P.(£) = p.(e€ +2"¢). We denote by U5 the mean value of the function U¢ in
F. Due to assumptions (6.2) and (6.3), there exists an extension E° of the function
E¢(-) = U*(-) — U5 in the ball M such that

IE[ly1.p200 gy < CLIES lwrrpe o (),

where P*(€) = pt(e€ + 2%¢) and the sequence of functions {p%}(e>0) satisfies asser-
tions (i) and (ii) of condition (C2). Namely, the extension being constructed as
usual by reflexion (see, for instance, [1]), we can easily guess that pf = p. in F5 and
Cp. < supyi |wp, |- Let us now extend the function U® in M by

U(§) = E°(§) + Us-
Applying the Poincaré inequality to the function E° in the domain F, we obtain
IVU[| ez gy = IVES [ prz oo gy S NES[lyrrz o gy < CLllES [l re o g

< CIVUZ | prer ) < Cmax(TH/2) 5 (VUS). TP £ (IVU9)),
(6.20)

where C'is a constant which does not depend on &, U¢. Now, for any 4, we introduce
the function u$ defined by

uf () = U (m _j ’ > (6.21)
This is an extension of the function u° in the ball M and u$ € W1HP=()(K?). More-
over, inequality (6.19) remains true. With (6.20), this means that conditions (C2)
are satisfied.

6.1.3. Condition (C3): the function A(x,q)

Let z € £2. We recall that the functional c;’:?)(z, @) that appeared in condition
(C3) has the form:

M (2,a) L int (5 ()| Ve P (@) 4 B7Pe@ =V — (2 — 2,d)[P(*)) du,
pe (") v Jrpnas

(6.22)
where ».(2) = k¢/pe(z) in 25, v > 0, @ € R", and the infimum is taken over
vF € WhPeO(KE N 05).

The idea of the proof of condition (C3) for the functional c e )(z @) is as follows
Firstly, using the solution of (6.7), we will approximate the minimizer of c " )(z a)
and show that the residue, i.e. the difference between the minimizer and the approx-
imation, gives a small contribution (as £, h — 0) in the functional c " )(z @). The
function A(z,d) is then calculated in terms of the approximating functlon

Let U%(z,-) be a Y-periodic extension of the function u®(z,-) solution of the cell
problem (6.7), on R™ \ 9, where M is the union of sets M; obtained from M by
translations of vectors N

Z ljej, lj € 7.
j=1

The regularity properties of the function U* are given by the following lemma.
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LEMMA 6.5. The function U* possesses the following properties:
U%(z,-) € LYF) and VU%(z,-) e LPoEF(F), (6.23)
where § > 0 and
po(z)n

q= n — po(Z)
any number if po(z) = n.

if po(z) < m,

Denote by {z"} an e-periodic grid in the cube Kj and denote by K? the cube
centred at the point ¢ and of length e. We cover K} by cubes K and introduce
a function W¢ defined by

We(x) = (x — z,d) —eU? (27 Z) in (UK;) N K7. (6.24)

Now let v¢; be the minimizer of (6.22). We represent this function as follows:

Vmin (7) = WE(2) + (*(x), =z € KN 25 (6.25)

We will prove that (¢ gives a vanishing contribution (as ¢ — 0 and h — 0) in
c;’;z_)(z, d) and, therefore, the functional (6.22) may be approximated in terms of
the function We.

The property (6.23) of the function U* and the uniform convergence of p. to
po imply that, for € small enough, W¢ € Wl’ps(')(KfL N .jS) Thus, by definition of
C;;(-)’ we have

&l (z,8) < WA (2, d), (6.26)

where

Weh(z,d) :/ (5 () [VWE|P=@) L =7 =P @) | We — (12— 2, @) |P=@)) d. (6.27)
Kings

Due to the definition of the function W€, for sufficiently small e, we have

k
Weh(z, @) = h"/ L 1Vut(z,y) — P dy+o(h™) ash—0.  (6.28)
7 po(2)

Let us estimate cg’ah_ (z,@) from below. In view of lemma 5.1(ii), for any vectors
£1,& € R™, there exists § which does not depend on & and such that

&1+ &P > &P + 5|6 PO + p()|& [P O3 (61, &).

Then we obtain

e,h —

Cpe() (2,d)

> W (2,@) + 025" (2,@) + / k| VWE P2 (YWE, V) da
Kﬁﬁﬂj

+ h‘”/ pe(@)h P DNWE — (@ — 2,@) PO AW — (¢ — 2,@))¢" da
Kings

= W (z,a@) + 02" (z,a@) + 37" + 35", (6.29)
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where

750z, @) = / (522 ()| VCE|P@) 4 =y 7Pe@)| ¢ Pe(@)) dy, (6.30)
Kings

Finally, from (6.26) and (6.29) we obtain the following bound for the residue (°:
0<Z°"(z,@) < C(g7" | + 135"))- (6.31)

Now let us estimate the right-hand side of inequality (6.31).

Estimate for 5. We rewrite j5" as follows:
G =y [ (W ) (I, 96 do
Kings
+ kf/ |[VWe|Pe@)=2(vWe, v¢e) de
K7nos

=i + 3% (6.32)

First, let us estimate jf’lh. Applying Holder’s inequality (3.1), we obtain

< CHVCEHLIJEWK;W;)|||VWE|||VWE|pE(')_2 - \VWEVD(‘)_Q\||an<‘><K;an‘-)v

(6.33)
where 1/p. +1/g. = 1. We note that, due to the properties of {p.}, there exist two
real numbers g~ and gt such that

.e,h
lg13

1<q <q = iréigqe(x) < g (7) < r;leagqa(x) =q" <q".

It now follows from (3.2) that
|||VW5|||VW6|Z>E(')—2 _ |st|pO(‘)_2|||L‘15(')(K,Zlﬁ_(2;)

+

1/q
< ( / |V |9 @) |y e|pe(@)=2 _ |gye|po@)=2)e(2) dx) . (6.34)
Kinos
Taking into account the properties of the function U%, we estimate the right-hand
side of (6.34) and obtain the following bound:
VW [[VWePO=2 — [TWEPeO=2| L) 0y < Cile, h), (6.35)

with Cy(e,h) — 0 as ¢ — 0. Now, turning back to (6.33), we use the following
estimates for (¢ deduced from (6.25) and (6.26):

/ ¢ P=®) dg < CH™™PK  and / |VCEIP=@ dz < Ch™,  (6.36)
K7nes K7nQs

where

2 < pg <p. = min pe(z) < pe(z) < max p.(z) =p
ze K} ze K},
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in K7 to conclude with (6.33) and (6.35) that

175" < Ca(e,h) with Co(e,h) =0 ase — 0. (6.37)

Now consider the term jf’zh. Let K be the cube centred at the point z € Kj
and of length A = h — h'T®, where « is a positive parameter which will be specified
later. Let ¢y, be a smooth cutoff function defined in K7 and such that ¢p(z) =1
in K7 and ¢p(x) =0 for z € 2\ K7. Then

i =k / VWP @2V, V(%)) de
Kines

+ kf/ VWP @) =2(TIWe V(1 — ¢p)C%)) da
Kines

= i7"+ " (6.38)

Integrating by parts and using the boundary condition of the function u® on M,
we rewrite i5" as follows:

il = 7/ div (k| VWE PO @ =2 1)), ¢5 da
Kings

owe
+ kg /8K |VW€|p°(x)_2W<PhCEdSa:-
h

But in view of the definition of functions W€ in (6.7) and ¢y, the latter relation
proves that

" =0. (6.39)
Consider the second term of the right-hand side of (6.38). The definition of the
function ¢}, implies the following bound:

.e,h
(D) < / |VW€|:D0(I)71|V<E|CL’E
kf (K7\K7)N$025

+/ VWPt Ty [|¢° da. (6.40)
(KE\KF)N$25

Using Holder’s inequality (3.1) and (6.23), for the first term of the right-hand side
of (6.40) we obtain

/ VW1V da
(KP\KF)N$025

< 2||VC8HLPE(')(K§ﬂQJi)H‘vwe‘po(w)71”L%(-)((Kﬁ\K;)ﬂQ;)

1/q(zh)
< Chn/Po(?) ( / aESR dac) : (6.41)
(KE\KE)NN5

where

po(2)

p(z,h) =po(z) +o(1) and q(z,h) = po(z) -1

+o(l) ash—0.
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Let us estimate the integral of the right-hand side of (6.41). We have

/ |vws|p(z,h)
(KR\KF)N025
1/(gs(z,h))
< (/ VWEPO(Z)M) [meas((Kj; \ K7)N Qi)]l/(ns(z,h))
(KE\KF)N$25
< Chn/%(z,h) . h(n-&-oz)/(ng(z,h))7 (642)

where gs5(z,h) = (po(z) +6)/p(z,h) and 1/n5(z,h) +1/qs(z, h) = 1. It follows from
(6.42) that

1/q(z;h)
( / VWE|P(Z>h>) < Chdm), (6.43)
(KE\KFE)ND25
where
po(z) — 1 (po(z) -1 po(z) — 1)
(n)=n——"——+« — +o0(1) ash—0. 6.44
") =1 w@ mers) oW (644

Then, from (6.41), (6.43) and (6.44) we deduce that, for sufficiently small h,

/ |VIWEPo@) =1 v¢e| da = o(h™) as h — 0. (6.45)
(Ki\K7)NQ25

For the second term on the right-hand side of (6.40), from (6.36) and (6.44) we
have

/ VW01 [T oy 7] dr
(KF\K{)NN25

< Chflfa/ [VWEPoln) = ¢ da:
(KRAKR)NS;

(Px—1)/Px
<0h1a</ W= P @) -1/ (e (2)-1) dx) o
(KE\K)IN;

1/pk
(. eroa)
K7ns

< ChHOm) (6.46)
where
1 po(2) — 1> Y
,n)=n-—a« + + +o0(l) ash—0. 6.47
ulrm) (po(z) po(z) +9 Po(2) ) (6.47)
We choose « such that
po(z) +0

a < (6.48)

TP fpo(z) +o—1
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Then, for sufficiently small h we have that u(v,n) > n and, therefore, for the first
term on the right-hand side of (6.40) we obtain
/ |VIWE P @) =1 T, ||¢F| dz = o(h™) as h — 0. (6.49)
(KG\KF)NN25

Now, from inequalities (6.38), (6.39), (6.45) and (6.49), for sufficiently small ¢, we
obtain the bound:
1755 = o(h™) as h — 0. (6.50)

Finally, alongside (6.37), estimate (6.50) gives:

3" = o(h™) as h — 0. (6.51)

Estimate for js ' In a similar way, by using the definition of the function W¢, we
obtain
175" < Cs(e, k) with Cs(e,h) — 0 as e — 0. (6.52)

Estimates (6.51) and (6.52) together with (6.31) imply that

Z5M(2,d@) = o(h™) as h — 0. (6.53)

Thus the residue ¢° gives a small contribution (as €,h — 0) in the functional
c;’:? (z,a@). With (6.26), (6.29), (6.51) and (6.52) we conclude that, for sufficiently
smafl g,

N (z,d@) = W (z,d@) 4 o(h™) as h — 0.

Because W*"(z,a@) satisfies (6.28), the latter relation proves that condition (C3) is
fulfilled and that

kf
A(z,a ——/ Vu®(z, — @) g ,

where u® is the solution of the cell problem (6.7).

6.1.4. Condition (C4): the function b(z,3)

First, we recall that the functional b;’;z,)(z, () appearing in condition (C4) has
the form:
16
bo" (2, 8) = inf 22 |Va® [P @) o Zm e |o(@) g p=pe@)=v72 )% — g|Pe(@) ) g,
Pe(+) we J g o f

z
h

(6.54)
where the infimum is taken over w® € W1 P<()(KF7).
Let us denote w®, the minimizer of (6.54), in the form
w®(z) = w° + £ (x), (6.55)
where )
_ e )
- e — in £25 N K,
@ (z) = - (6.56)

6 in 25N K;.
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We will prove that £° gives a vanishing contribution (as ¢ — 0 and h — 0) in
b }E (z,8) and, therefore, that the functional (6.54) may be calculated in terms of

the functlon W* or, more precisely, in terms of the function w?.
Firstly, it is easy to see that

15
b;]z)( B) < / <%€|V,u~)s|pe(w) 4 om |7I)E‘U(w) + h—Ps(ac)—’Ylﬂ@E _ /6|p5($)) dx
€ z O-
h

1
-, (%@»vwﬂ%@%+|wﬂ“”)dx
K7nge, o(x)

L peh(2, B). (6.57)
Let us calculate the integral on the right-hand side of (6.57). Taking (6.2), (6.3)

and the regularity properties of pg, o, w? into account, for sufficiently small e, we
have

k-m po(z
Ma’h(Z,B) :/ (Elv ~e‘p5(;c)+ |~5|U(1)) dz
K7ngg o(z)

()
—d:(z Pe ()
:/ (kms() Vwﬁ<x_$§> +1|@€|0(ﬂﬂ)> dz
KFNQse, pe(@) € o(x)

— pn k’fﬂd(z) ﬂ po(2) Wﬁ o(z) z + o h" as
N e L L
(6.58)

To rewrite the right-hand side of (6.58) we consider the boundary-value problem
(6.8). Multiplying (6.8) by (w? — 3)/po(z) and integrating over M, we obtain

kmd(2) | o 5 1po() 1 / 51 Blo(s)—2 oo
o\Z) — o(z _ ()Y 4o '
/M Po(2) [Vw’] po(2) M(ﬂW w”] |w” 7)) dz (6.59)

It then follows from (6.58) and (6.59) that, for sufficiently small € and as h — 0,

1

1
&h = A" - BlwBle(z)=2 _ |,B8|0(2) Blo(z)
M (z,8) =h / <p0(z)(ﬁw [w”| |w? 7)) + . Z)|W \ )dx

M
+o(h™). (6.60)

Let us estimate b;’zz.)(z, 3) from below. As before, we use lemma 5.1(ii). We have

B (2 8) 2 Mz B) + X (2, 8) + | Ke(@)|Var P A(VaE, VET) da
Ky,

+/ 1 |,Lbs|a(9c) 2~ E§€d$
Kf

+Lhm@VWMW—WﬂHmtmfm

h



534 C. Choquet

:Arﬁ@¢n+axawaﬁy+/nf@@mvwﬂ“”%%vin€ﬁh
K}

+/ 15, (2)[@f |77 "2 °¢* dar
;

= M=" (2, B) + 06X (2, B) + =" (2, B), (6.61)
where
Xs’h ’ d:ef ( Vgpsgl;) () eaz
uﬂ>.éi @IVep) + 2
+ hpa(f)Vlf}(x)gﬂpf(”) dx, (6.62)

Nah(Z,ﬁ) d:ef/ (Ka(x)|vws|ps(x)—2(vme’ st) + |a}e|a(m)—2ws§s) dz
KzZnge
(6.63)
It follows from (6.57) and (6.61) that

0< XMz, 0) < 5l (2, ). (6.64)

Now let us prove that £° gives a vanishing contribution in bE h ( ,B). To this
end, we have to estimate the right-hand side of (6.64). First, it is easy to see that

/ K. (2)|Viaf|Pe =2 (Vs VET) da
Kznge
= / fem P @) |Va® P () =2V, VET) da
U, Ms
- / b d(2)eP2) |V o)~ (Vi VE°) do
U, Ms

+ kpm (Ezno(ﬂﬂ)|vﬁ,€|ps(r)*2(vﬁ,€7 VEe)
U; M5

— d(2)e @) | Vs [P =2(Vap®, Ves)) de. (6.65)
Moreover, it follows from the definition of the functions @<, p. and (6.10) that the
second term on the right-hand side of (6.65) goes to zero as €,h — 0.

Using (6.10), (6.8), (6.65) and the regularity properties of the functions w”, py, o
and then integrating by parts, we obtain

XMz, B)
< c‘ / (kpmd(2)eP° )|V PO =2(Vif, VET) + w7 20 ¢%) da
Kinge

|ds, < T (6.66)
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To estimate the integral on the right-hand side of (6.66) we apply Holder’s in-
equality. We obtain

[ e
K7nos2g,

m

B 611}5’ _ 1/px
2 € 5

—— 1€ dsx<< / 3 ”dex)
7 e >,

,| 0w Pr /(P —1) (px—1)/Px
<Z / [|v e po(2)—2| 997 } dsx) . (6.67)
IME 81/
where
2 < pg <pz = min pe(x) < pe(r) < max pe(z) = pf <pj in Kj.
reK}, reK},
Consider the second term on the right-hand side of (6.67). We have
~e | 1Px/(Px—1)
/ {|Vw€|p0(z)2 0" ] o dsy
OMs v
B811Pr/(Pr—1)
=" 1. (5—po(z)+1)p;’</(p;’<—1)/ [|Vw5|p0 (2)-2| I ] A ds,
OM al/
< Ceh g mpol3), (6.68)

Since (e~ 17Po(2))Pr/(P—=1) < Ce™Po(2)+1/Po(2) " then it follows from (6.68) that

(32 I

8w

Pr/(Pr—1)
] ds,

)(pK_l)/pK

< OR™MPr=1)/Pr c=Po(2)+1/po(2) (6.69)

Inequalities (6.69), (6.66) and (6.67) give

1/pk
TJe < Chn(pRl)/pkgl/po(Z)< / &2 [P dsm) .
: ; oMz

Using the following bound [14, (7.135) in the case po(z) = 2],

| ogerran<S [ gebraseart [ wepias,
OM§ € Jrp\M; KE\M;

we obtain
_ _ _ B 1/px
J% < ChneR-V/pk ( / 1€5[PK dar + 7o) / vee|Pi dx) . (6.70)
K;No80s K7no05

Let us estimate the right-hand side of inequality (6.70). Consider the first integral
in this inequality. It follows from Hoélder’s inequality (3.1) and inequalities (3.2)
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that

| 1R do < PR o znons)
Kjinos2s

Pr/Pk
< c( / &5 [P (=) da:) : (6.71)
K7nons

- ., P /P
gro() / IVEe|Pr da < c<ePO<Z><PK/PK> / |v&epe(=) dx) . (6.72)
K7nons K7nons

Then it follows from (6.70)—(6.72) and the definition of the functional X="(z, 3)
that

Je < O hPx—1)/pPx (/ |€s|ps(r) dx
. Kjinoss
1/pi
L opo(2) @ /p) / e pe@ dx)
K7noss
- - h—pe(x) =7 _
— OpPr—1)/Px (/ P |£6|p5(l) dz
K7nons
1/pi
_|_€po(Z)(P1+</P?<)/ Ve |p(@) dx)
K7nogs
< ChP=V/Pic . p(Pi/PR)+ (/PR (X (1, B))1/Prc | (6.73)

Now it follows from (6.66) and (6.73) that
Xh(z, B) < ChnPr=1/Pic . p(Pr/PRI+(1/PR) (Xh (5, B))/Pr

or
XM (2, 8) < Chs™, (6.74)
where
aef Px—1 P Pk Pk Pk
s(n) = n=——-— e T 1
Pk Pk —1 P Px—1 px prg—1

(6.75)

Due to the properties of the function py and (6.75),

P n Y

s(n) =n+— =
pr—1 prg—1

+O(h) ash—0.

Since py > 2, then ¢(n) > n and we infer from (6.74) that

lim X" (2, 8) = o(h™) as h — 0. (6.76)
e—0

Thus, the residue £° gives a small contribution (as €,A — 0) in the functional

b:’;zi)(z, B3). We conclude that, for sufficiently small e,

b;;h(»)(zﬁ) = M>"(2,8) + o(h™) as h — 0.
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Because M (2, @) satisfies (6.60), the latter relation proves that condition (C4) is
fulfilled and that

_ 1 BlwBr@=2 _ | Blo@y 4 L 1,800
b ) = [ (ol WA 4 sl ),

where w” is the solution of (6.8).
Theorem 6.1 is proved.

REMARK 6.6. Note that, for the sake of simplicity and brevity, in this section we
consider a periodic case only. We make use of the same arguments (with evident
modifications) for locally periodic or disperse media. In the proof of the correspond-
ing results we follow the ideas of [7,14], where locally periodic and disperse media
were considered.

Appendix A. Proof of lemma 5.1

It is clear that the dependence of the function p on the variable x plays no role in
the proof. Then we take an arbitrary constant p > 1. Let f be a function defined
in R by

f(t) =& + (& — &P

Assertion (i) is justified by the convexity of f.
Now we prove assertions (ii) and (iii). The Taylor—-MacLaurin formula gives

ﬂU=f®HﬁW®+A%L%ﬁ%0&
that is,
&l = 6l + pla P26 - (62 — &)
+Ah»ﬂ@@%m+ﬂ&&W“W&+d&&DW&&W

+pl& + (& — &) PG — &)P) dt,
(A1)

if |& +t(&2 —&1)] # 0 for 0 < ¢ < 1. Of course, if there exists some ¢ € (0,1) such
that & + t(&2 — &) = 0, then we have

1
&P — &P = pl&a]P 721 - (b2 — &) = |&fP (1 e ipt)p * (ftﬁ t)p>

and the result is obvious. We now have to estimate the integral term in (A 1).
We begin by assuming p > 2. We denote

1
zr:A(1_pr—mm1+w&—fow%«&+w@2—&n-@z—&»2&’

1
bz/kr%mm+u@—&w*m—aﬁﬁ
0
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Then I; > 0 and

1
I, =pl& — §1|2/0 (L—t)[& + (& — &P 2 dt

> pl& — &IPL(P)(J&P 2 + &2 — &P72)
> plée — &PL(p)|é2 — &IP3,

where the constant L(p) depends solely on p. Assertion (ii) is proved.
Now we assume 1 < p < 2. We note that

G+t — )P (G +HH&e — &) (L —&))* <& +t(& — )P 2 — &
Then

pp—2)|& +t(& — )P (& + (& — &) - (&2 —&))?
> p(p — 2)&1 + (& — &P 2e — &

and
/() = pp— )&+ t(& — &)P2E — &I

Therefore, the following relation holds true:
1 1
[ a-0rwaspe-vie-aP [ 0-0k+de-ap2a
0 0

> p(p— Ve — &42(1 o) / €+ (6 — £1) P2 dt

for any 0 < ¢ < 1. Since &1 + t(&2 — &1)| < |&1] + &2 for any ¢ € (0,¢), we assert
that

¢ ey P2 ¢
/0 |61 +t(&e —&)[P=dt > R

Assertion (iii) of the lemma follows. Lemma 5.1 is proved.
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