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ABSTRACT. The paper entitled “Well posedness of general cross-diffusion systems” [6] is devoted to the
mathematical analysis of the Cauchy problem for general cross-diffusion systems without any assumption
about its entropic structure. The absence of this type of hypothesis is strongly felt for two questions:
the uniqueness of the solution, despite the nonlinear coupling of the highest derivatives terms, and the
maximum principle. The article [[6] is therefore largely devoted to these two points. The answers are
provided at the cost of certain assumptions or technicalities, mainly:
o the ratios between the diffusion and cross-diffusion coefficients has to be drastically controlled for
sufficiently enhancing the regularity of the solution, namely its gradient belongs to the space L4((O7 T)x
Q); the regularity is obtained by adapting the classical Meyer’s to the nonlinear parabolic setting un-
der consideration ;
o the source terms have to ensure the confinement of the solution.
The present “companion” paper aims at showing where more classical analysis tools fail to solve these
questions and gives some additional clarifications.

Keywords: cross-diffusion system; quasilinear parabolic equations; uniqueness in the small; bound-
edness.

1. INTRODUCTION

In what follows, excerpts from the article will be written in blue. Some notations are recalled in the
present section. The second section is devoted to the uniqueness result and some points related to the
maximum principle are presented in the third section.

We consider an open bounded domain Q of RY, N € N*, N < 3. The boundary of Q, assumed to be
of class ¢!, is denoted by I". The time interval of interest is (0,7), T being any positive real number.
Set Q7 := (0,7) x Q. All the results and all the computations of [6] are done for a particular class of
cross-diffusion systems, the one classically modeling the dispersal of two interacting biological species.
Indeed, it is one of the less cumbersome systems containing all the difficulties inherent to the analysis of
a strongly coupled cross-diffusion:

m
Ou; =V - (8Vui+u; Y Ki jVuj) = Qi(u) inQr, fori=1,...m. (1.1)
j=1

It is completed by the following boundary and initial conditions, fori = 1,...,m:

w; =i pin (0,T) x T, u;(0,x) = ud(x) in Q.
1
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For any 1 <, j < m, the tensor K; ; is assumed to be bounded and uniformly elliptic. More precisely,

there exist two positive real numbers, 0 < Kifj < K;rj, such that

N

0<K IEP <Kij&-&=Y (Kijub& <K&, vE e RV\ {0}, (1.2)
Ki=1

We consider the fully non-degenerate setting
>0 1<i<m, (1.3)

thus prohibiting the full exploitation of entropy methods.

The previous sentence deserves some attention. First of all, it is interesting from a pedagogical point of
view: thinking that a parabolic problem is easier to analyze than a degenerate parabolic problem is indeed
sometimes misleading. Such an a priori is tempting because of the regularity result, in L2(0, T; H'(Q)),
which is usually induced by the parabolic structure. But it is still necessary to be able to demonstrate that
a solution exists for it to inherit this regularity! Moreover, as explained in the Introduction of [[6], losing
the entropic structure also makes us lose one of the usual methods to prove a maximum principle for the
solution. Let’s add to the confusion. As already mentioned, the system considered here may be viewed as
a model for the dispersal of two interacting biological species. Its degenerate setting is partly considered
by Carrillo et al. in [3]. They write “The main mathematical difficulty here arises from the cross-
diffusion term allowing for segregation front to form in the solutions.[...] These remarkable results
have severe consequences, initially smooth solutions lose their regularity when both densities meet each
other. In fact, they become discontinuous at the contact interface immediately.” Why do not they share
our analysis of the difficulty? Because they have to face a kind of ‘ultimate maximum principle’, namely
a segregative result: if one of the unknowns reaches a given maximal value, the other one vanishes. Here,
on the contrary, a simple boundedness result requires far from obvious considerations.

Let us now introduce some elements for the functional setting used in the present paper. For the sake
of brevity we shall write H'(Q) = W!?(Q) and

V=H}Q),V =H ' (Q), H=L*Q).
The embeddings V C H = H' C V' are dense and compact. For any 7' > 0, let W (0, T') denote the space
W(0,T):={w € L*0,T;V), dw € L*(0,T;V')}

endowed with the Hilbertian norm HwH%V(O’T) = Hw||i2(07T;V) + ||8ta)||%2(07T;V,). We assume that there
exists a lifting of each boundary function u; p, still denoted the same for convenience, belonging to the
space L*(0,T;H'(Q))NH'(0,T;(H'(Q))"). Due to the smoothness of T, such a result is ensured if
uip € L*(0,T;H'/2(T))NH'(0,T; H~'/(T))) (see [[10]). The initial data u are assumed to be in H, the
source terms Q;(v) to be in L*(Qy) for any v € (W(0,T))", 1 <i < m.

INotice that such segregation fronts do not make sense in many physical situations, thus the importance of considering the
non-degenerate setting.
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2. UNIQUENESS

Here, as in the article, we postpone the difficulty related to the establishment of a maximum principle
to later and we begin by considering the problem with some bounded nonlinearities. To this aim, we
introduce , for £ > 0, the truncating function 7; defined by

T;(u) = max {0, min{u, ¢} }.

We then consider the following problem: for i =1,...,m,

m
Ou; =V - (& Vu; + Ty(u;) Y Ki jVu;) = Qi(u) in Qr, 2.1)
j=1
u;=u;pin (0,T) x T, u;(0,x) = ud(x) in Q. (2.2)
The initial and boundary conditions are supposed to satisfy the compatibility conditions
w(x) =u;p(0,x), x€T, 1<i<m. (2.3)

For the sake of simplicity, we set m = 2. The following existence result is proved in [6].

Theorem 1. Assume that the tensor K satisfies:

(K 48 (KL 48 o
K, (7 K, e )

Then for any T > 0, the problem @1)~@2.2) admits a weak solution (u;)i—1 2 € (W(0,T))2. Furthermore,
if almost everywhere in Qp, 0 < u?, 0 <ujp and Q;(v) > 0if v; <O, the following relation holds true

0 <ui(t,x) forae xeQ, forallte (0,T),i=1,2.

Proving a uniqueness result for a cross-diffusive system is always a tricky problem. In [6], the results
are founded on an additional regularity result, namely a Meyer’s type property allowing to upgrade the
regularity of any solution of the cross-diffusive problem from L?(H') to L*(W'#). Forcing the regularity
of the solution in this way could seem unnatural since the typical Meyer’s result is an upgrading from
L*(;H') to LS (W), for some s = 2 + €, where € > 0 could be a priori very small. We thus discuss this
result in the following subsection. The second subsection presents the kind of uniqueness result we can
prove without forcing the regularity.

2.1. Enhanced regularity result. We begin by a parabolic extension of the Meyers regularity theorem
[11]]. Once again, we introduce some notations. Let X, = L”(0, T;Wol P(Q)), p > 2, endowed with the

norm T "
' p
([ 11 gar) " = 19Vl

The space Y, = LP(0,T;W~'7(Q)) is endowed with the norm ||f|[y, = infaye—f |&ll(zr(@r)v- Given
F €Y, there is a unique solution u € X, of the following initial boundary value problem

du—Au=FinQr, u=0o0n(0,7)xI, u(0,x)=0inQ.
We set A~! = 9, — A, so that u = A(F). Let g be defined by

g(p) = l|All2,x,)-



4 COMPANION PAPER FOR WELL POSEDNESS OF GENERAL CROSS-DIFFUSION SYSTEMS

It is well-known that g(2) = 1. Now, let A € (L=())V*" be such that there exists o > 0 satisfying

N
Y Aij(x)&& > a|E]? forae. x € Qand forall &€ € RV,
ij=1

We set B := maxi<; j<n||Ai || 1~(q) and &u = — Z?f,‘:l Ok, (AiJaxju). We state the following Lemma (cf
[1] and Appendix in [6]]).

Lemma 1. Let f € L*(0,T;V"), u’ € H and u € L*(0,T;V) be the solution of
ou+du=finQr, u(0)= u® in Q. (2.5)

There exists r > 2, depending on o, B and Q, such that if u® € Wo1 "(Q) and f €Y,, then u € X,. Further-
more, the following estimate holds true

HMHXr < C(aaﬁ7r)(‘|fHY; +ﬁT1/rHMOHW01,r(Q)), (2.6)

where the constant C(o,3,r) > 0 depends on Q, o, B and r (but not on T) as follows:

g(r)
Cla,B,r) < , k(r)=g(r)(1—u+v 2.7
(0B < (s K =)0+ Y)
where L = (a4¢)/(B+c), v =(B>+c*)'?/(B+c) and c is any real number such that ¢ > (B> —
a?)/2a. If. moreover, A is symmetric, the estimate [2.7) holds true with L = ot/ and v = ¢ = 0.

The latter lemma is actually a Meyers type result. Indeed, we have 1 —u +v < 1. According to the
Riesz-Thorin’s theorem, the function g is bounded by a continuous function p such that p(2) = g(2) = 1.
It ensures that, if s is close enough to 2, k(s) < 1 thus the invertibility of the operator d; + <7 from X;
to Y. The additional information here is a criterion, expressed with regard to the norm of the inverse of
the Heat operator A, which basically states how close to A the operator d; + .o has to be for ensuring its
invertibility.

In the spirit of Meyers’ regularity result, the existence result of a solution of (2.1)—(2.2)), Proposition
1 in [6], could thus be rewritten as follows.

Proposition 1. Set o; = 0, Bi =68+ fKi—;, i = (OC[ + Ci)/(ﬁi + Cl') and V,‘z = (ﬁiz + C%)/(B, + C,‘)2 for

i=1,2. Let c; = 0 if K; ; is symmetric and c¢; > (B? — &?) /20 if not. Let (uy,uy) be a solution of Problem

Z1)—(22). Assume that (¢,6;,0,) and the tensor K satisfy

(B + i) (W — Vi)
20 '

Then, there exists some s > 2 such that, if (u9,u3) € (W'*(Q))?, then Vuy and Vuy belong to (L*(Qr))V.

K < i=1,2,i#]. (2.8)

The reader may wonder what kind of uniqueness result may be obtained from the latter natural en-
hancemenﬂ An answer is given in the following subsection.

Zthat is without forcing the regularity to reach s = 4
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2.2. Uniqueness in the small result. “Uniqueness in the small” entitles Section 4.2 of the monograph
[8]] co-authored by Olga A. Ladyzhenskaya and Nina U. Uralceva. This work is especially renowned for
providing a complete uniqueness analysis of quasilinear pde’s in the scalar case. In the present setting,
the following approach does not seem too presumptuous: we could transfer the uniqueness in the small
result from p.257 of [8]] to the case of our system just following the same ideas and adding more and more
restrictions when it becomes necessary. Bear in mind that a (nonlocal) uniqueness result is provided in
[6] in the case Q C R? as soon as a first restriction on the ratios between cross-diffusive and diffusive
parameters ensures the additional regularity in L*(0, T; W!#(Q)) of the solution and as another technical
restriction is assumed. We now aim at checking if a local uniqueness result could be reached with weaker
assumptions. The computations are detailed in the following lines. Notice that they also shed light on
the assumptions that could lead to a result of overall uniqueness when N > 2.

2.2.1. Preliminary computations. Assume that (uj,u;) and (i1),i;) are two weak solutions of (2.1).
Then the functions v; :=u; —i1; € W(0,T), i = 1,2, weakly solve the following system in Q7:

v —V-((& +K1,1T£(M1))VV1) V- (K11 (Ty(ur) — Ty (1) Vidy )
=V (K 2Ty (u1)Vv2) = V- (K1 o(To(uy) — Ty iy ) ) Vi) = 0,

vy =V ((8+ Koo Ty(u2))Vva) = V- (Koo (Ty(uz) — Ty (i) ) Vita)
—V - (Ko, 1 To(u2) V1) = V- (K21 (To (u2) — Ty (i02)) Vity ) = 0.

Assume that (u1,u;) and (i, i) coincide a.e. t € (0,T) on the boundary dK, of a given open sphere
K, C Q of radius p. Then v; and v, satisfy homogeneous Dirichlet boundary conditions on dK,. We
multiply the equations by, respectively, v and v, and we integrate over (0,7) x K, with 0 <t < T. Using
the fact that v;(0,.) = v2(0,.) = 0 a.e. in Q and the coercivity property of K; ;, we get after summing up
the two equations:

;/KP(MIZ(LX)HWZ(M)) +/0t /Kp((51 +Ki17"g(u1))|Vv1|2+(52 +K£272(M2))]Vv2\2)
+/Of/K (Tf(l/tl)_n(b_tl))(Kl,lvm+K1,2Vﬁ2)-VV1+/Ot/K (K1 2To(ur) + Kot Ti(12) ) Vv - Vv
+ /0 /K (To(u2) — Ty(i12) ) (K2, Vity + K22 Vip) - Vva < 0. 2.9)

Using the Cauchy-Schwarz and Young inequalities, we get for any arbitrary &4, > 0,i=1,2:

‘/Ot /Kp Ki.,—in(ui)Vvi'Vv_i’ 561/21(;_1.(/0[/1% |Vv_i‘2>1/2(/()t/l{p D(ui)\Vvi]2>l/2

(K" t ‘
PRy L[ v ea( | | T vn).

481+2

These terms may be treaten as in [6] provided that £(K;" )%/ K;; is sufficiently small with regard to 6_;.
We will therefore no longer pay attention to these terms.
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By the definition of 7; and since u;, i#; > 0, we have that Ty(u;) > 0 and |7y (u;) — Ty (it;)| < |u; — it;| = |vil.
For notational convenience, let K; ; = max;—_;» |K;rj\, i=1,2. We have

(Ty(u ))(K,,Vul—i—K_,Vu ) Vvidxds| <

/ / Ki o [vil (V] + |Vi_i]) [Vvi| daxds.

Kp

All the difficulty induced by the cross-diffusive structure lies in the estimate of the latter integral, in the
form

t
I,'j :/ / Ki,-&-’Vi’ Wuj\ ]Vvi\dxa’s, i,j = 1,2. (2.10)
0 JK,
According to the Cauchy-Schwarz and Young inequalities, we have

Izj<€1// |V V,|2 48 // |VMJ| |v,|2
1

for any & > 0 and we now focus on

t
J:/ / ‘Vui|2‘vi’27 l,_]Zl 2
0oJk,

Step 1: Estimate of [, pr |Vu; |
Let ¢ € €~(Q) such that Pk, =1 and @rx, =0 with K, C K, C Q, p1 > p. We use the test function
u;@?, i = 1,2, in the variational formulation of (2.1)). We get for i = 1,2:

//8,u,u,(p —i—// (6 + K, ; To(u:)) p 2|V
t
—l—/ /K,'JT[(L{I')([)QVMJ"VM,'—FZ/ /(Si—l—Kiﬂ"g(ui))ui(qui-V(p
0JQ 0JQ

t t
+2/ /Ki,jTé(ui)”i(PV”j'V(PS/ / Quip>. (2.11)
0 Jo 0 Jo

The term fé JoKi jTg(u,-)(p2Vu i+ Vu; may be controlled as in the existence proof of [6]:

//K T(ui) @ | V| +

We thus have to estimate the following quantities:

= [ =3 [} o
= Ui = = —_— u;
1 o Jo ¢ 2 )0 dt Jo ¢

!
12:2/ /(5i+Ki,i72(Mi))Mi(PVMi'V(P7
0 Jo

!
13 = 2/0 /QK,-JTg(u,»)u,-(quj . V(p,

t
14=//Qui(P2
0 Jo

2. (2.12)

’//K,]Tgu,(quJ Vu;| <
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For I, and I3, we have to estimate

t t
| [alvuiivel= [ [ wvulivel, j=i-i
0Jo 0 JKp,

Set p; = 2p. We can choose ¢ such that maxq |V¢| < C/p. Then

t C rt C t 1/s t 5/(s—1) (s—1)/s
iIVusllv <f// ,-V-<—// Vulf // /(
Pz v <y (L) (L)
(s—1)/s
/ il / dx)dr) < C2(2p)Ns=1/sylo=2))s
sz p

:CCSZI( 2/ p((N=1)s=N)/s (2.13)

if we assume:

(i) arestriction on the ratios between cross-diffusive and diffusive parameters ensures the additional
regularity in L* (0, T; W15(Q)), s > 2, of the solution and

il s 0.7wrs(0)) < G

(ii) either the real number s is large enough for ensuring the Sobolev injection W' (Q) C L=(Q),
that is

s>N.
Notice that the estimate (2.13) may be replaced by the following

1
// ui| V||V | < CCy = 1/5p(N=Ds=N)/s (2.14)
0 JKyp

if we assume:
(iii) we deal with bounded solutions u;.

Assume for I; that the initial conditions in (2.1)) are such that

/K W02 < cp((V=Ds=N)/s, (2.15)
2p

Finally, the quantity I may be controlled by /; thanks to the Gronwall lemma. Nevertheless, as we
aim also deal with the time independent case, we provide another estimate. We write for instance

!
= | [ [ 09| < il 1911 0-10 w0y < Coll@ie-viy oy

and we assume that Q satisfies

1O /1) (k3 ¢ (0,0 < CON NI, (2.16)
We infer from (2.12)-(2.16) in the sum of (2.11));, i = 1,2, that
+ 2

EK’ —i \—1 s —1)s—N)/s
@Vl < (5 -ty et ZHMOHLLHQHD/ g x(00))P T

1,0
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and thus, in view of the definition of ¢:

! 2 EKitiz -1 2. (s—2)/s 2 02
o J 17 = @S T e F €0 00)
x p((N=1)s=N)/s, (2.17)

Notice that §; — EK;;Z /(4K;;) > 0 in view of the assumption made for ensuring the existence of a
solution for (2.1I) (see Theorem|I).

Step 2: Auxiliary results for turning back to J.
We first mention Lemma 4.3 page 59 in [8] (and its corolary) : if m > 0, if a > 0, if |, K, [v| < Cp™*+? then
pr x—y| 7" %2 |v(x)| dx < Cy (&t, m,C,diam(Q))p%/? for any y € K,. We have denoted by diam(Q) the

diameter of Q. Set v = [ |Vu;|>. Setm =N —2 and & = (s — N)/s. Assume s > N so that & > 0. We
have m+ o = ((N—1)s—N)/s. We thus infer from (2.17) and Fubini’s theorem that

t t
// |xfy|7N+27a/2|Vu,-|2 :/ ‘xfy‘*N+2*a/2/ |Vu,-|2
0 JK, K, 0
< C(Cy,5,N,t, HM?HLZ(KZP)v HQHLS/(A'*I)(KZPX(O,t)))pa/z (2.18)

for any y € K.
We now can think of appealing to Lemma 4.4. page 61 in [8]]: Suppose that a function u > 0 satisfies
forally € K,

/ |x_y|7N+m7(x/2um < Cp(x/Z
Kp

with o > 0 and 1 < m < 2. Then, for any { € W' (K,) with zero trace on the boundary K, the
following inequality holds true:

[ weaeNmap e [ wwe

K, K,

Unfortunately, the latter result is proved using several Holder’s inequalities and the argument cannot be
directly transposed to our time-dependent framework.

2.2.2. The stationary case. We restrict for some lines the study to the stationary case. The reader can
check straightforward that our previous computations remain almost unchanged for the elliptic setting.
We now can apply the result of Lemma 4.4. page 61 in [8] mentioned above. It allows to infer from

(2.18]) with m = 2 that

/K Vil*|Vii? < C(N, G, 1 Qll s iy )P /K Vvl (2.19)
p p

Conclusion for the stationnary case.
Estimate (2.19) under assumptions (i)-(ii) allow the control of J, thus of I in (2.9) provided that p is
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small enough. Indeed, by combining all the inequalities above, we obtain that

2
K+ (s—N)/2s ((Ky)) 2
(61 —2¢&1 — T&C(N,CS,S, Q1|1 g5,y )07 = 484)/1(’) V1|~ dxds
2
K>+ (s—N)/2s E(KIJTZ) 2
+(6 — 28— 26 C(N,Cy; 5,112l 31651 (k3,) )P - 483)/1(’3 [Vva|” dxds
+HKT, —83)/1( D(ul)\Vvl\zdxds+(K£2—84)/K To(u2)| Vv | dds
P P
<0. (2.20)

Hence, assuming s > N and p small enough, we can conclude that v; = 0 almost everywhere. The local
in space uniqueness is proved. The result reads as follows.

Proposition 2 (Stationary case, local in space uniqueness). Assume that two weak solutions (uy,u;) and
(it1,12) of the elliptic version of Problem [2.1) coincide on dK,, for an open sphere K, C Q of radius p.

Assum o o
(K™ 48 (Ky,)" 45
— < —, — < —.

K, 14 Ky, 1
Assume that the source terms satisfy (2.16) with s > N. Assumﬂ further that K is such that (uy,u) and
(it1,i12) actually belong to W'*(Q). Then

(ur,up) = (ity,iz) a.e. in K.

Notice that the two results issued from [8] in the latter proof still hold true if 8Kp NI # 0. The
interested reader may check easily that all the other computations remain true replacing K, by Q. In this
case, (2.17) reads

+ 2

2 eKi,fz —1
/Q|Vu,-| <C(6- iK ) 1Ollsr6-1(gy (2.21)

and (2.19) simplifies into:
| PV < C(Cos. Qe 1) diam(@)

It follows that the latter result may be viewed as a global uniqueness result in the whole domain Q
provided its diameter is sufficiently small and provided its boundary is sufficiently regulatﬂ

(s=2)/s / |Vvil2. (2.22)
Q

Proposition 3 (Stationary case, global uniqueness in a small and smooth domain). Assume Q is a smooth
domain of RN. Assume

(K1+,2)2 30, (K21)2 30
— < —, — < —.
K, l K5, L
Assume that the source terms satisfy (2.16) with s > N, p = diam(Q) and C sufficiently small with regard
to 8;. Assume further that K satisfy the assumptions in Proposition|l|for s > N. Then the weak solution

of the elliptic version ofProblem is unique in W' (Q).

3This first assumption is also made in [6].
4See Prop. |1} This second assumption is weaker than the one in [6]] and may be obtained without computing g(s) if N = 2.
5 Indeed, in that case, we have to bring the proof of Lemma 4.3 in [8] from the sphere K, to the whole Q.
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2.2.3. The time-dependent setting. For turning back to the general setting, we can assume an additional
hypothesis for ensuring that (2.19) remains true. Reading the proof of Lemma 4.4. page 61 in [8] shows
that assuming further that

Vu;, i = 1,2, belongs to (L™(0,T;L*(Q)))N (2.23)

ensures that all the results presented in the latter subsection extend to the time dependent case provided
that the assumptions made on the source terms Q; also hold true for the initial data ||u?||,> (see estimate
(2.18)).

3. ENHANCED REGULARITY AND MAXIMUM PRINCIPLE

In [6], the authors consider the question of the boundedness of the solutions of (2.1)—(2.2) without
using their enhanced regularity result: assuming solely that the assumptions in Theorem (1| fulfilled,
they prove that there exists source terms Q; € L*(0,T;(H'(Q)")), i = 1,2, such that the system (T.1)
completed by the initial and boundary conditions admits a weak global solution such that, for any
T >0, (ui—uip)i-12 € W(0, T)? and the following maximum principle holds true:

0 <u(t,x) <¢ forae.xeQ, forallt € (0,7) and foralli=1,2.

In the present section, we aim at exploring if the enhanced regularity obtained in Proposition [T| may
be exploited for stating a maximum principle holding for a class of source terms. It turns out that such a
result holds true provided that the regularity enhancement is sufficient (and actually quite important, see
below).

We state and prove the following result.

Proposition 4 (Explicit bound of the solutions of (Z.1)—([2.2)). Let £° > 0. Assume that the source terms
are such that Q; = Q;(t,x,u;) with Q;(t,x,y) € L*(0,T;W~15(Q)) a.e. y € R, Q;(t,x,y) > 0ify <0 and
Qi(t,x,y) <0ify >, a.e. in Qr. Assume that the initial and boundary data are such that

0< u? <PaeinQ, 0< ulp <P ae. in (0,T).

Assume that the assumptions in Proposition |l| hold true with H s =2N/(N —1). For any m > 1, there
exista real number C = C({°,m,s,K;;, 5., Hu?HWL.v(Q),N) such that, if T|Q| < C then

0 <u(t,x) <ml° ae. inQr, i=1,2.

Remark 1. The bound in Proposition 4| depends in particular on T, on |Q| and on ||u?||w. Such a
dependence is classical for quasilinear parabolic equations (the interested reader may for instance check
that the result in Proposition H| is slightly better than those in Section 6, Chapter 2, in [9] ; notice
that Zhou obtained in Theorem 1 in [13] a better result without any condition on |Q|T, but only for
classical solutions of a nonlinear parabolic equation). It means that if the quantities T, |Q| and ||u? |-
are sufficiently small (especially ||u°|| < €0 < £) we have

0 <u(t,x) <l forae x€Q, forallt € (0,T) and foralli=1,2
and that the system (2.1)) is actually the system (1.1)).

®Bear in mind that this specification for the regularity characteristic s may be specified using the assumptions of Proposition
1 in [6]].
7See its explicit value in (3.6) below.
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Remark 2. For N = 2, the result in Proposition 4| holds true provided that the solutions belong to
L5(0,T;W'$(Q)) with s > 4. It means that the solutions are Hélder continuous in space. Such a regu-
larity is just above the one assumed to prove the uniqueness result in [6]].

Proof. The inequality 0 < u;(¢,x) almost everywhere in Qr was already obtained in Theorem |1} Let
k > ¢°. We write the variational formulation of the equation

oty — div((5,~ +Kii72(ui))Vui) —div(K;—Ty(u;)Vu_;) = Q;
for the test function (u; — k)* = max{0,u; — k}. Integrating by parts we get

1 _ .
51t =) 1170 7120 + (8 + Koy min{k, ENIIV (1t =) 12 0 71200

< ‘ / KiiTy () Vi -V (ui — k)*‘ < K min{k, 0} M p1;(k)=2)/s
Qr

where we set
1K) = mes{(t,x) € Q s.t. us(t,x) >k} = /O ! /Q Xty (1,3 dxdt
and M is the real number such that
[t4i | s 0, w1 (02)) < M.
Notice that, according to the computations in [6], the dependence
Ms = My(s,Kij, 8, T, €, || lw1+())
is explicit. It follows that

H(ul - k)JrHIZJ”(O,T;LZ(Q)) + Hv(ul - k)JrH%LZ(O,T;LZ(Q)))N < C,Ui(k)(siz)/s,

2
C= K"~ min{k, ¢} M?
min{1, &+ K min{k, oj} i mintk My

and

||(ul - k)Jr”L""(QT;LZ(Q)) + ”V(”t _k)+||(L2(O,T;L2(Q)))N < C,'.u[(k)(Siz)/zs7

/2K min{k, (} M,
C; (3.1)

min{1, \/6,- +K;; min{k,(}} '

We now aim at exploiting (3.1)), noticing especially that C; does not depend on °. Let m > 1, m’ > 0.
Let k, = m®(1+m' —27") forany n € A, A = {n € N such that k, > m¢°}. Let ny = min.#".
First, using classical Sobolev injections, we notice that if ¢ € [2,2N/(N —2)] and r > 2 are such that

1 . N 1
ro2g 2
then there exists some ¢ > 0 such that the following interpolation inequality holds true:
1-2/r 2/r

HMiHL’(O,T;Lq(Q)) < aHui”Lm(()./T;LZ(Q))”VMI.H(LZ(QT))N
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and then, according to the Young inequality, there exists some 3 > 0 such that
luillro.r:za()) < B (ltillz=o 7:20)) + 1 Vetill 2200 -
Thus it follows from (3.1) that
1t = ken) o720y < CibB )~/ (3.2)
Next, we fix g =r =N +2. Since
(= kn) " 2wt = (= k) Xt} = Rt = Kn) X (b))
we have
/Q | (i = k) "1 2 4yt )+ 20y At > (Kiy 1 — k)" i (k1)
T
and thus
(K1 — k)i (ne) V" < 1|t = k) Tl 0. 72 @) (3.3)

where k1 — k, = mf° /2!, We infer from (3.2)-(3:3) that the sequence (v)ues = (ti(kn))ney is
such that

Var1 < (2B im0y (3.4)

One may check that such a sequence satisfies v, — 0 as n — oo if the two following conditions hold true:

r(s=2)/2s:=14+¢f > 1,
Vg < (mEO)’/Cz—r(l/CH/gZ)(Ciﬁ)_,/g'

The first condition is reached as soon as s > 2N /(N — 1). The second condition is ensured if
Vg = Wi(kny) < (me®)"/E27r /SRS ()%, (3.5)
Replacing &, by ¢° and k11 by k,, in (32)-(33), we get
(m = 1)C;(kyy) /" < G (€0) 1
and, since p;(#°) < T|Q|,

r CIB r r
/Ji(kno)l/ < WT(HC)/ |Q|(1+C)/ .

Hence the condition (3.5) is ensured if

(CB) 1+¢ 1011+ 0\r/En—r(1/5+1/82) /€
B e A Q < (me”)7e27" B)"

N T1+C|Q‘1+C < (m o l)rmr/szr(l/CH/Cz)(Cl_B)r(l/{fl)(EO)r(1+1/§)' (3.6)
If (3.6) is satisfied, passing to the limit n — co, we obtain
tim (k) = s (1-+ 1 ymt?) =0

for any m’ > 0, thus y;(mf°) = 0 that is u;(¢,x) < m¢® a.e. in Q7. O
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FIGURE 1. Aquifers modeling

4. CONCEPT OF CONFINED SOLUTION

The result in Proposition | has two weaknesses: a quite large regularity enhancement and a limitation
of the size of the domain of interest Q7 are necessary. Whatever, it is proved in [6]] that these assumptions
are not necessary, at least for a source term: there exists a confined solution of the problem (1.1)), (2:2))
in the following sense.

Definition 1. The problem (I.1) completed by appropriate boundary and initial conditions admits a
confined solution if there exists a source term Q € (L*(0,T;(H'(Q))"))™ and u € (W(0,T))™ such that

u; solves
m

du; — V- (5,-Vu,~ + u; Z Ki’jVuj) =Q;in Q7
=

and u; is bounded almost everywhere in Qr, i =1,..,m.

The advantage of this definition is that the term ‘confined’ clearly corresponds to the construction
of the solution which is forced to remain bounded by the penalization method. Another asset is that it
sometimes corresponds to a physical interpretation of the confinement.

This latter point requires some precisions. In [6], the physical interpretation is detailed for the example
of aquifer modelling.

Define the depths %, i; and h; as in Figure[I] The saltwater intrusion in the aquifer may be modeled
by the following system (see [4]):

Oh—8Ah+aV - ((ha—h)Vh)) = V- ((1 —a)(hy —h)Vhy) =0, (4.1)
Oy — 8Ahy —V - (1 —a)(hy —hi)Vhy)) — aV - ((h, — h)Vh) = 0. (4.2)
Complete the latter system by initial and Dirichlet boundary conditions. Set u; = h—h; and up = h, — h.

The system @.1)—@.2) enters the formalism of (I.I)), (2:2). Hence, assuming the necessary conditions
for Theorem |} namely ¢ = hy and 1 —48/h, < o < 1, we can prove the existence of a weak solution
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u = (u1,uz), with nonnegative components, and thus of 4 and h; solving (#1)—(#.2)) in any given space-
time domain Q7. Assuming moreover that the initial and Dirichlet boundary conditions respect the
physical hierarchy of interface depths, h; < h < hy a.e. in Qr, we prove in [6] that there exists a confined
solution of this problem. To this aim, since the physical intuition consists in trying to prove that 0 < Ay,
that is u; +uy < hy a.e. in Qr, we add an ad hoc penalization term in the equation characterizing
§ = u] + up, namely

0,s® — 6As® — V((Uo(ss —uf)+(1— Ot)Uo(uf))Vs‘g)
—aV-(Up(uf —s°)Vu§) — 7'V - (Up(s® — u§)VUy(s° — hy)) =0, (4.3)

where Up(x) = max(0,x), and we let € — 0.

The interesting point is that there exists a physical interpretation of the latter penalization process.
With the penalization term in {.3), we assume that the aquifer is highly permeable above the depth
z = 0, thus the very high averaged permeability, namely equal to £~!, when the thickness u| + u; of the
water exceeds /. At the first order, this very conductive layer acts like a confining layer, as emphasized
by the bound u; +uy > 0 at the limit € — 0. The situation is comparable to the presence of a highly
conductive layer, a shallow substratum, at the top of the aquifer, which acts as a drain, and where the flow
has a predominantly horizontal direction (see [12]], [2]). The mathematically confined solution (A;,%) of
@1)-@2) with 0 < hy < h < hy a.e. in Qr, appears as the weak solution of

Oh—8Ah+aV - ((hy—h)Vh)) =V - ((1—a)(ho —h)Vh;) =V -2 =0, (4.4)
Oy — 8Ah =V - (1 —a)(hy —hi)Vhy)) —aV - ((hy —h)Vh) = V-2 =0, (4.5)
in Q7 completed by initial and Dirichlet boundary conditions, where 2 € (L?(Q7))" is such that
2 =0a.e. in Qr.

We would like to add an important note to avoid any confusion. Indeed, we have illustrated the concept
of ‘confined solutions’ by taking the example of aquifer models. Unfortunately, the term confinement is
already used by hydrogeologists in the study of aquifers, but with a different meaning: in hydrogeology,
a confined aquifer means that the reservoir is physically confined by an impermeable layer at its top
and that it is fully saturated (that is #; = 0 here). The mathematical model for the evolution of the salt
interface 4 and the hydraulic head @ in a confined aquifer is (see [5]])

Oih— 8Ah+aV - ((hy—h)Vh)) = V- ((1 — o) (ha — h)V®) =0,
V- ((1=a)(hy—h1)V®)) —aV - ((h, — h)Vh)) = 0.
On the other hand, if we focus on the behaviour of (#.4)-(4.3) in a measurable subdomain where h; =

0 and hp —h > a_ for some a_ > 0, we notice that we can write 2 = (1 — «)(hy —h)VP with P €
L*(0,T;H}(Q)). Hence, the confined solution of the unconfined aquifer model solves:

Oh—8Ah+aV - ((ho —h)Vh)) — V- ((1—a)(h, —h)VP) =0,
—V-((1—a)(hy—h)VP)) —aV-((ha—h)Vh) =V - ((1—a)(hy —h)VP))) =0
with P € L*(0,T;H} (Q)). Simple numerical simulations show that the two latter systems produce very

different solutions (see e.g. Figure|2[). However, in both models, the solutions remain confined (bounded),
by an impermeable layer or by an infinitely permeable layer.
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aty=15 —

pumping pumping

area Larea
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of the sdif-fresh of the sak-ffesh
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freshwater P /N freshwater 7

saltwater T saltwater

FIGURE 2. Keulegan experiment with pumping: confined aquifer (left) versus confined
solution in an unconfined aquifer, i.e. solution confined by an infinitely conductive upper
layer (right). In the Keulegan experiment [7], the interface between salt-and freshwater
is initially artificially inclined. Then the interface should freely evolve due to the density
contrast and the gravity effects until horizontal stabilization. Here a pumping source
term is added, thus the existence of a saltwater dome at the end of the computations. The
computations are done with the density contrast corresponding to seawater compared to
clear water, o = 0.025 and the same pumping rate.
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