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Anomalous diffusion show through numerical simulations the efficiency of this new model. In particular, using
Finite elements Taylor’s ‘historical’ parameters, we illustrate that our derived contributions are important
and that using them is necessary in order to simulate correctly the reactive flows. We
emphasize three main points. First, we show how the effective diffusion is enhanced by
chemical effects at dispersive times. Second, our model captures an intermediate regime
where the diffusion is anomalous and the distribution is asymmetric. Third, we show how
the chemical effects also slow down the average speed of the front.
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1. Introduction

We consider the evolution of a soluble substance introduced into the Poiseuille flow in a slit channel. In fact, this problem
could be studied in three distinct regimes: (a) diffusion-dominated mixing; (b) Taylor’s dispersion-mediated mixing; (c) chaotic
advection. We focus our analysis to regime (b), corresponding to the dominant Péclet numbers, but smaller than a threshold
value. We also consider the transition between (a) and (b).

If the channel is the domain 2%,

QF={x"y"): x" €R, |y*| <H},
the height of the channel being denoted by H, H > 0, the equation governing the evolution of the solute concentration c* is

ac* , 9% , 9% o,

—D —D =0 in 7, (1)
ax* 3 (x*)? a(y*)?
where q(z) = Q*(1 — (z/H)?) is the Poiseuille profile, Q* being the maximum velocity at the axis, while D* is the molecular
diffusion. Eq. (1) is of course completed by appropriate initial and boundary conditions. Boundary conditions are especially
important in the present work since they model the reactions with the walls. We will turn back to this point somewhat later.

ac*
at*

+q0")

* Corresponding author.
E-mail addresses: cchoquet@univ-Ir.fr (C. Choquet), carole.rosier@lmpa.univ-littoral.fr (C. Rosier).

1468-1218/$ - see front matter © 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.nonrwa.2012.02.008

Please cite this article in press as: C. Choquet, C. Rosier, Effective models for reactive flow under a dominant Péclet number and order one Damkohler
number: Numerical simulations, Nonlinear Analysis: Real World Applications (2012), doi:10.1016/j.nonrwa.2012.02.008



http://dx.doi.org/10.1016/j.nonrwa.2012.02.008
http://www.elsevier.com/locate/nonrwa
http://www.elsevier.com/locate/nonrwa
mailto:cchoquet@univ-lr.fr
mailto:carole.rosier@lmpa.univ-littoral.fr
http://dx.doi.org/10.1016/j.nonrwa.2012.02.008

2 C. Choquet, C. Rosier / Nonlinear Analysis: Real World Applications I (11EE) IRE-ENI

Let us first focus on Eq. (1) and introduce appropriate scales to emphasize the significance of a dominant Péclet number. The
obvious transversal length scale is H. For all other quantities we use reference values denoted by the subscript R. Setting

C* X* y* t*
c=—, XxX=—, y=—, t=—,
CR LR H TR
* D*
=% p=Z
Qr Dg
where Ly is the ‘observation distance’, we obtain the dimensionless equation
T, dc  DpTp _d%c  DyTx _d%c
0L Blrgq oy D — —ED— =0 2)
at Lg ox Ly 0x H ay>?

2=Rx(—1,1).

The times scales involved in this equation are

T, = characteristic longitudinal time scale = %
. L. . 2
Tr = characteristic transversal time scale = ’;—R.

We define a small parameter ¢ by
H
&= —.
Lg
The Péclet number Pe, defined by

L
Pe = LQR7
Dg

being supposed to be dominant but before a threshold, assume there exists 0 < a < 2 such that Pe = ¢~*. The lower order

process of diffusion is rescaled by % = QRe = ©(g27*). Choosing the dispersive time for reference time by setting
Tr =T,
Eq. (2) yields
ace L0 -y 0t _ e 9%t _,9%c* o 3)
ot ox ax? ay?

Clearly, there is a great anisotropy in the former equation. The dispersion is due to this combined action of dominant
convection parallel to the axis and molecular diffusion in the radial direction. Actually, in fundamental papers [1,2], Taylor
and Aris found the following one-dimensional approximation for (1) with no-flux (Neumann) boundary conditions on the
side walls:

2 *
™™ + %ax*c“y —D™3Lc™ =0 inR,. (4)

In (4), the effective axial diffusivity contains a contribution proportional to the square of the transversal Péclet number in
addition to the original molecular diffusivity:

8 Q*H
D™ = (1 + ﬁPeT> Pe; = I (5)
The solute is convected by the average velocity of the flow (g) = 2Q*/3 and diffuses with respect to the Taylor’s dispersion
coefficient D™,

Taylor’s paper [1] was the first one of a huge literature on the subject. This does not allows us to give an exhaustive
list of references. Let us only mention the mostly used methods. Roughly speaking, passing from the two-dimensional
equation (1) to the one-dimensional equation (4) corresponds to a vertical averaging. Difficulty is that the equation for
the difference between physical and averaged concentrations is not closed because of the dispersive source term 9dy(qc*).
For its determination one should go to the next order and actually solve an infinite system of equations. Derivation of (4)
is thus linked with the choice of the ‘closure scheme’. Aris [2] presented a formal derivation of Taylor’s approximation
using the method of moments. This method, further developed by Brenner and collaborators (e.g. [3]) is still very common
nowadays. Other interesting series expansion methods are in works [4-6]. An important step is to “justify” the closure
of the computations (or the truncation of the series expansion) either by orders of magnitude arguments (e.g. [7-9]), or
by homogenization techniques (e.g. [10]) or volume averaging approach (e.g. [11]; this latter approach being adapted for
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complex geometries) or by a center manifold argument (e.g. [12]). Very different approaches consist in starting from the
position process of each molecule with an appropriate description of its transition probability function (e.g. [13]). The
Taylor-Aris result (4) is then equivalent to the asymptotic Gaussian nature of the process. Such a probabilistic analysis
may lead to a variety of non-local transport models (e.g. [14]). In particular, some abstract assumptions on the transitions
between jumps of the molecules lead to kernel memory terms comparable to those used in the present paper, though derived
with a very different method. We finally mention derivation of (reversible) non-parabolic models, using statistical physics,
in papers [15-18].

The approximate models proposed in the latter references are justified for asymptotic large times. Nevertheless, it
is worth mentioning that the literature does not provide information about the induced error. Up to our knowledge,
articles [19-22] give the first derivations of Taylor's type models controlling the error in energy, without assuming
unrealistically regular data. More precisely, in the latter papers, the optimization of the error estimates is a crucial step
in predicting the effective coefficients.

Moreover, papers [19-22] focus on possible chemical effects. One may guess of course that adsorption and desorption
processes increase the heterogeneity of the solute plume injected in the pipe and thus should influence the final dispersion
phenomenon. Flow with chemistry has already been considered in numerous works, based on the same methods than the
ones listed above, and thus without error estimates. We mention for instance [23-25] (for a reactive mixture, but no reactions
with the walls) based on the method of moments, [26] based on the Fife and Nicholes expansion, [27] based on [28,29] based
on closure schemes of turbulence modeling and a volume averaging approach, [30] based on the center manifold approach.

The present paper aims at giving numerical illustrations of the results obtained in [22] where adsorption and desorption
reactions occur on the walls of the channel through a linear driving force model with a finite kinetics and a linear isotherm.
In [22], the authors derive rigorously an upscaled Taylor’s type model where influence of the chemical kinetics on the
dispersive effects is explicit. The model was justified through error estimates depending explicitly on the small parameter
& = H/Lg. Presence of an initial time boundary layer allows only a global error estimate in L? with respect to space and time.

In the present paper, we show through numerical simulations the efficiency of the model derived in [22]. In particular,
using Taylor’s original parameters (see Section 3), we illustrate that the derived contributions are important and that using
them is necessary in order to simulate correctly the reactive flows (see Section 4.1). The model derived in [22] is reproduced
in Section 2 (see (9)-(12)). The reader will note that the chemical reactions on the walls produce complicated memory
terms. We thus aim to emphasize three main points through our numerical simulations. First, in Section 4.2, we turn to the
question of anomalous diffusion. We show how the effective diffusion is enhanced by chemical effects at dispersive times.
Furthermore, the model of [22] also captures an intermediate regime where the diffusion is anomalous and the distribution is
asymmetric. Second, in Section 4.3, we show how the chemical effects also slow down the average speed of the front. Finally,
in Section 5, we present numerical illustrations of some other effective models: the case with the Danckwerts boundary
condition in Section 5.1, and the case of nonlinear reactions in Section 5.2.

2. Exact and upscaled problems

Let us write the precise setting of the problem. We consider the transport of a reactive solute by diffusion and convection
by Poiseuille’s velocity in an infinite two-dimensional channel. The solute particles do not react among themselves. Instead
they undergo an adsorption process at the lateral boundary. For a general discussion on the modeling of adsorption processes
in porous media, we refer to [31,32].

We consider the following exact model for the solute concentration c*:

ac* ac* 9%c* 9%c*
+q@y®) —D* —D* =0 inQ*, (6)
at* ax* 3 (x*)? a(y*)?
ack ck
—D*9pc* = =~ =ki(c*— =] onI", (7)
at* Kx
(XYL 0) = c(x"),  F (X", 0) = cp(xY). (8)
The crucial difference between problem (6)-(8) and the one originally considered by Taylor is the boundary condition
on the side walls I'* = {(x*,y") : x* € R, |y*| = H}. Taylor assumed no-flux conditions. Here Eq. (7) describes

reaction at channel wall I'* linking the solute concentration ¢* and the adsorbed species surface concentration c;". The
adsorption rate constant is ki (homogeneous to a velocity), the linear adsorption equilibrium constant is K;* (length), the
constant desorption rate being characterized by kf /K. These quantities are all positive real numbers. Eq. (8) describes initial
infiltration with a mollified Dirac pulse of water containing a solute of volume concentration cj, and the adsorbed species
surface concentration cj. In [22], we assume ¢, € CF°(R), ¢5y > 0 and ¢y € C°(R), ¢y > 0. Following Taylor’s example
(B1) (see [1, page 192]), we can take for cj, the mollified Dirac measure of mass M, concentrated at x = 0.

We have already explained in the Introduction how appropriate scales have to be chosen ensuring the Péclet number in
the range of the Taylor’s dispersion regime (see the derivation of (3)). We now have to describe the order of magnitude of the
kinetics, characterized by the Damkdhler number defined below. If we introduce reference values denoted by the subscript
R in the reaction equation (7), three characteristic time scales appear,
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Tpe = characteristic desorption time scale = ’,%’:
S|

T4 = characteristic adsorption time scale = C;j{RR,
S|
Treace = superficial chemical reaction time scale = kH—R
S|

with the Damkdéhler number defined by
CTaQk

Assuming K.z ~ H, and the time scales Tp,, T4 and T; of the same order, implies Damkoéhler’s number of order one (with
respect to ¢, that is of order €°). We will see below that this order one (to be compared with the order €%, « > 0, of the
Péclet number) is sufficient to ensure that the kinetics appear at the main scale in the upscaled model. Hence one should
take care simultaneously of the flow and of the chemical reactions.

It should be noted that transport models derived for nonreactive solutes are often used, in conjunction with
experimentally-derived correctors, to predict the transport of reactive chemicals. Here instead we used an upscaled model
rigorously derived in [22]. In [22], the authors prove that the upscaled problem in R, corresponding to (6)—(8) for the basic
dimensional effective concentration c® is the following: find c®T € [?((0, T) x R) such that

gceff 2 gceff 38 92ceff K K 2 pr* . .
“Nn* —D*(1 7[’62 7sceff [ Zs / e—ks (t*—&) /K Ceff . d
o T3¢ o ( * 945 T) a2 T K Kx) Jo (.85

1 H k* O e K\ k*
— ZperDar— — [ c°ff / e ks (" =8)/K, s t — _ s | coff Y
3 KK ( * i) €O =2 | o

4 H k* e k (4K *
+ - Perk! : aneel — = / e T e sms}
; Kr Jo

Da

45 K*
kX e en [ CX 1 ¢y H [k s x4 k¥ H
= Sekt/k 10 4 —perDar0 — [ St* — 1)t e /M — 5 —_pe; gk, (9)
K Ky 3 Ky Kx \ K 45 K K
Ly = Clo, (10)
where the transversal Péclet et Damkaohler numbers, Per and Day are given by
* *

Pe; = —— and Da; = —=.
T e T 0
Existence of a unique solution c¢®® € H'(0, T; H?(R)) is proved in [22]. Then the dimensional effective solute and sorbed
concentrations read

Cfe:{l(X*7y*9 f*) — Ceff(X*, f*) + HPeTaxCeff(x ,t*) (61_12 _ Em —_ ﬁ + g — ﬁ PeTDaTK—*

e

* 2
x Ceff(x* t*) _ E /t e—k;‘(t*_{f)/l(jceff(x* £)de | — 1 _ lji @e_k;*t*/Kg‘PeTDaT (11)
’ K Jo ’ 6 2H?]K ’

e
C:ff(X*, f*) — C:097’<;6[*/I<: + TLk;k/ e*l@‘(t*,s)/l{e"cfeuflfl(x*’ %-) d%- (12)
0
and it gives an approximation of order O((¢Per)3/?) of c* and cs. More precisely, the approximation is justified rigorously
by the following error estimate.

Proposition 1. Let 1 < o < 2 and assume that the times scales Ty, Tpg and T; are of the same order (not depending on €).
Assume that (c3y, ¢i) € (C3°(R))2. Let ¢*T € H(R,; H*(R)) the solution for (9)-(10). Then we have

* eff

* eff
C — Crun —C

+|
12(2%x(0,T)) s s

3/2
pirerony = CCePen*™ (Icigllng + Kol ) (13)

On the one hand, in the first line of the effective equation (9), we easily recognize Taylor’s model of dispersion. On
the other hand, adsorption/desorption reactions introduce complex retardation and memory terms. Some characteristic
parameters based on the data from Taylor’s article [ 1] are given in the next section. Let us here mention briefly two important
Taylor’s examples, one with = 1.614, H = 2.6-10~% m, the longitudinal Péclet number Pe = 0.95-10° and Pe; = 78 and
the second one witha = 1.96, H = 2.6- 10~ m, the longitudinal Péclet number Pe = 4.14- 10° and Pe; = 173. Obviously,
in Taylor’s situation, our derived contributions are important and using them is necessary in order to simulate correctly the
reactive flows. Since we cannot neglect the complex term induced in the model by the kinetics, we give a precise description
of their effects in the present paper, through numerical simulations.
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Table 1

Parameters values in Taylor’s paper.
Parameters Values
Width of the slit: H 5.1073m
Characteristic length: Lg 0.632m
& =H/Lg 7.9113-.103
Characteristic velocity: Q* 3-1073m/s
Diffusion coefficient: D* 2-1077 m?/s,
Longitudinal Peclet number: Pe = [zxQ*/D* = 9.48 - 10°
o = logPe/log(1/e) = 1.8921440
Transversal Peclet number: Pe; = HQ*/D* = 75

3. Taylor’s example

All the numerical illustrations of the paper have been computed using the package FreeFem++ [33] and the following
space and time discretization.

e Discretization in time. The first order operator is discretized using the method of characteristics. More precisely, a
convection equation of the form

atc+q' Ve :f(x5 t)a

being given, the one step backward convection scheme by the methods of characteristics reads as follows

1
g(C"H(X)) —"X"(®) = f"(x)
where ¢" denotes the approximation of the solution ¢ at time t, = ndt, and X" (X) is an approximation of the solution at

time t,, of the ordinary differential equation

dX
E(t) = q(X(t)a tn)a X(tn+1) =X

A Taylor’s expansion result implies that c"(x — q"(x)dt) is a first order approximation of ¢" (X" (x)). We get the one step
backward convection scheme reading:

1
5 (€100 = "x = q"0080) = "),

Turning back to our complete problem with the diffusion term, we use the following scheme:

1
a—t(c”“(x, y) — c"(x—q)st.y)) — (Dxd; — Dy0;)c" ' (x,y) = f(x, y, ndt).

e Discretization in space. One of the characteristics of our problem is the presence of a smeared front. In order to track it
correctly, the Lagrange P1 finite elements with adaptive mesh are used. The mesh is adapted in the neighborhood of front
after every ten time steps.

We begin our numerical illustrations by an example issued of the pioneer’s work of Taylor [1]. This example is a reference
test in view of emphasizing the differences between a transport without kinetical effects and a transport under order one
Damkéhler number as presented in the next sections. We compute the following set of parameters thanks to the precise
description by Taylor of his experimental setup and obtain Table 1. Note that we choose here the critical example from [1]
where « is very close to the threshold value o* = 2.

For this set of parameters, we compute the vertical average of the solution c* of Eq. (1), and we compare it with the
solution ¢™ of (4). In order to show that in this situation one cannot neglect Taylor’s dispersive contribution, we also
compute the solution c™® of a very brute approximation by simple averaging, that is

2 *
e ™Y 4 %ax*cmy —D*3%c™ =0 inR,. (14)

For the three equations, we choose the following initial and left boundary conditions:
Clx=0 = 1, Ct=0 = 0.

Originally this problem is formulated in a semi-infinite channel. In our numerical computations, we have considered a finite
one of length NLz, N € N* being chosen sufficiently large for our purpose. This prevents the outflow boundary condition to
influence the tracer breakthrough at the observation points. For instance, setting N = 4 was sufficient for our simulations.
At the outflow we have imposed a homogeneous Neumann boundary condition

3)(* Clx=NLg = 0.
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Fig. 1. Comparison between concentration from Taylor’s paper (‘tay’) and from the simple average (‘moy’) with the vertically averaged solution of the
original problem (‘exactTay’), at times t* = 100, 200, 300, 500 s.
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Fig. 2. Comparison between variance computed with the analytical solution (‘sig2_tay’) and with our numerical scheme (‘sigtay’).

Some results are presented in Fig. 1. They show clearly the smallness of the error between exact and Taylor’s approximate
solution and the advantage of Taylor's model over the model obtained by taking the simple mean over the vertical section.

Note that here, in absence of chemical reactions, we can solve explicitly the effective problem (4) using the integral
formula:

CTay(X H=1- L (exp <@> /OO e_,IZ dn+ /00 e—nZ dr]) (q) = 2Q*/3
’ Jr D™ J Jixtiqyey/2v/DTo¥0) (x—{q)0)/ VDT D) ’

An analogous result holds true for the solution of (14). We thus also have used this first setting to calibrate our numerical
scheme. As an illustration, we present in Fig. 2 the evolution of the variance for small times, computed respectively with our
numerical scheme and with the explicit solution (definition of the variance being recalled in the beginning of Section 4.2).
Obviously, the numerical results meet well the analytical solution. The detailed analysis of the variance is postponed to
Section 4.2.

4. Numerical simulations on the effective model

This section presents the main results of the paper. We develop numerical simulations for the effective model derived
in [22] for Taylor’s dispersion under dominant Damkéhler numbers.

4.1. Comparison of the exact and effective solutions

Retardation and memory effects on the dispersive characteristics due to the adsorption/desorption reactions appear in
the effective model (9)-(12). In the present section, we aim to show their importance. In particular, the chemistry influences
directly the characteristic diffusion width. We thus perform similar simulations to the ones presented in Section 3: we
compare now the transverse average of the solution c* of the real problem (6)-(8) with the effective approximation defined
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Table 2

Parameters values for the kinetics.
Parameters Values
Adsorption rate constant: k 2.37-107° m/s
Adsorption equilibrium constant: K 5.10"3m
Longitudinal Damkoéhler number: Da = T:g* = 1
Transversal Damkohler number: Dar = é—;; = 7.9113-103

T T
EFFT100° ——
"EXACTT100’
EFFT200'
"EXACTT200’
EFFT300" ————

EFFT500" -~ - |

0 1 1 \‘ 1
0 02 04 06

Fig. 3. Comparison between concentration from the vertical average of the original problem (‘EXACTT’) and from the effective model (‘EFFT’) at times
t* = 100, 200, 300, 500 s.

T T 2
"EFF100" ——
'EXACTI00" -------

EFF200° -
'EXACT200°

'EFF300" -
'EXACT300' -

'EFF500' - - - -
EXACT500" -~~~

0.8

0.6

0.4

0.2

0

0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2

Fig. 4. Similar results to those of Fig. 3 but computed for a value of € divided by 2.

by (9)-(11). We use the same set of parameters as in Section 3 Table 1 with the ones for the reaction characteristics described
in Table 2. We choose ki = Q*¢, K} =H, Ty =T;.

In presence of the reactions described through (7) and Table 2, the analogue of Fig. 1 is Fig. 3. Clearly, there is a good
agreement between the exact and effective solutions. The small differences are essentially due to the value of parameter
€ = H/Lg which is quite important in this example. It is sufficient to divide € by 2 (hence diminishing the term C((sPe;)>/?)
in error estimate (13)) to drastically reduce the differences (see Fig. 4).

We add some numerical simulations to highlight the kinetics effects on the solute spread in Figs. 5-7.

In Fig. 5, we present a reference example with the profiles obtained as the height H varies. If H decreases, so does the
transverse Péclet number Pe; and the effective diffusion coefficient: we observe a global retardation in the spread of the
front. A decrease of H also means a decrease of the superficial chemical reaction time scale. One observes its effect at the
head of the front.

In Fig. 6, we present a reference example with the profiles obtained when the axial velocity Q* varies. A decrease of Q*
means an increase of the transverse Damkohler number Dar. The observed profiles are thus more stiff because they are
more slowed down by a relatively stronger adsorption rate.
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0.8

06

0 0‘.2 (;.4 ‘1 1‘.2 1‘.4 1‘.6 1‘.8 2
Fig. 5. Comparison between the profile of the effective concentration presented in Fig. 2 when H = 5 - 1073 (‘effref’) and the one of the effective
concentration when H = N - 1073 (‘ef£hN’) at time t* = 200 s.

Fig. 6. Comparison between the profile of the effective concentration presented in Fig. 2 when Q* = 3 - 10~ (‘EFFREF") and the one of the effective
concentration when Q* = N - 103 (‘EFFQN’) at time t* = 200s.

"EFFREF’ ——
EFFRLS’

E 16
Fig. 7. Comparison between the profile of the effective concentration presented in Fig. 3 when Lg
concentration when Lz = 0.832 (‘EFFRL8’) at time t* = 200 s.

0.632 (‘EFFREF’) and the one of the effective
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Fig. 7 presents an example with a decrease of both Péclet and Damkoéhler numbers. It should induce of course a net slow
down of the propagation of the front. This is confirmed by the simulations on the upscaled model (9)-(11) presented in
Fig. 7. Note in particular that with our choice of parameters, the increase of Ly induces a decrease of ¢ = Dar appearing in
(9)-(11).

4.2. Enhanced and anomalous diffusion

We recall that information on a diffusive regime may be obtained by computing, for a given concentration c, the first
moments about the origin My and the associated variance o2, defined by

+00
M(t) = / xex, t)dx, 0<k<2,

o0

o (t)* = My ()Mo (t) — My (0)*.

The characteristic diffusion D, is then such that o (t) ~ +/D.t. Nevertheless, observations have emphasized the existence of
regimes where o rather expands as t*, o % 1/2 (see for instance the observations in a sand column described in [34]). This
phenomenon is referred to as anomalous diffusion.

The question of enhanced and anomalous diffusion arises naturally from the fundamental work of Taylor [1].

e Taylor showed that, for sufficiently large time, any point discharge of tracer in laminar pipe Poiseuille flow evolves to
a symmetric Gaussian distribution moving longitudinally with the mean speed of the flow and with a characteristic

diffusion width o ~ |/ D* (1 + %Pe%)t. This is an enhanced diffusion compared to the original one o ~ +/D*t.

e In the mean time, Taylor, in his experiments, noted that for moderate time a distinct asymmetry was observed, in
contradiction with a Fickian behavior.

By ignoring longitudinal diffusion and interactions with the pipe’s boundary, Lighthill [35] showed that the tracer
distribution spreads longitudinally proportional to t for the moderate time. This is perhaps the first observation of anomalous
diffusion in the fluids literature. Then, Chatwin [36] generalized the Aris result for transversely uniform initial data to the full
variance temporal evolution, and computed short time asymptotic behavior of this special case. Short time behavior is also
the preoccupation of [6]. More recently, Latini and Bernoff[37] generalized the method employed by Lighthill to consider the
anomalous spread of an initial distribution before complete transverse mixing has occurred. The authors of [38] employ the
stochastic differential equations underlying the passive scalar equation and the rules of conditional probability to compute,
with no approximations, the moments needed to construct the complete variance valid for all times. The long time limit of
the variance is shown to agree with Taylor’s type result. References for reactive settings are seldom. Motivated by the study
of a flow in a catheterized artery with conductive walls, the authors of [39] considered a similar problem in an annular
pipe, but for a very simple model of reaction, i.e. an instantaneous linear equilibrium. They use a Crank-Nicholson scheme
coupled with series expansion, once again formal, to approximate the mean concentration distribution using the first four
central moments. Let us finally mention the recent work [9] which clearly describes difficulties induced by the modeling of
preasymptotic times and which moreover evaluate mixing.

Difficulty is to determine the short-time limit of the domain of applicability of Taylor’s type models since they are
constructed to hold true at large times. Looking for an answer through numerical simulations was done as soon as some
years after Taylor’s work (see [40]). We now show that the effective model (9)-(11) is able to capture the three regimes of
diffusion encountered in such a problem of tracer injection in a thin pipe.

Diffusive regime Initially, diffusion dominates over advection yielding a spherically symmetric Gaussian dispersion cloud.
Note that in the simplest case of absence of reactions, longitudinal displacement due to diffusion is of order
O (+/D*t). The relative longitudinal displacement of two particles is controlled by ©@(Q*D*t?) due to the
parabolic shear (compare the convective displacement of a particle at the center of the pipe with the one
of a particle that has diffused of ©(+/D*t) in the transverse direction). This regime is then limited to the
times t < (Q*2D*)~/3.In the present paper, the time limitation also depends on the kinetics.

Anomalous regimin this regime, the displacement due to tracer diffusing transversely and being sheared longitudinally
dominates over the longitudinal diffusion. In this regime, the variance show an anomalous diffusion and
the distribution of solute concentration is distinctly asymmetric.
As emphasized by Latini and Bernoff [37], this kind of phenomenon appears when the majority of the
tracer has not yet interacted with the pipe’s boundary. Here, in the case of reacting wall, the effects are
enhanced.

Taylor's regime At large times, the flow is in classical Taylor’s regime, for which the tracer is homogenized transversely

across the pipe and diffuses with a Gaussian distribution longitudinally.
In the original setting of Taylor (see Egs. (4)-(5)), the diffusion is enhanced by the factor 8D*Pe%/945. In
the present paper, there is a greater enhancement due to the reactions.
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Table 3

Parameter values for the variances computations.
Parameters Values
Width of the slit: H 107'm
Characteristic length: Lg 1000 m
& =H/Lg 1074
Characteristic velocity: Q* 9-10"*m/s
Diffusion coefficient: D* 2-1077 m?/s,
Longitudinal Peclet number: Pe = [zxQ*/D* = 45108
o = logPe/log(1/¢) = 1.6633
Transversal Peclet number: Pe; = HQ*/D* = 450
Adsorption rate constant: k; 9.10~%m/s
Adsorption equilibrium constant: K 5.10"'m
Longitudinal Damkdhler number: Da = TALS* = 1
Transversal Damkohler number: Dar = kK _ 1074
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Fig. 8. Evolution of the variance (with respect to time) for the reactive problem.

Let us illustrate that the three latter behaviors are captured by model (9)-(11). Due to the complex structure of the
effective equation (9), the observation of these latter phenomena is not obvious. Numerical simulations thus become a
particularly interesting tool.

To deal with large time computations, we slightly modify our set of parameters. Tables 1 and 2 are thus replaced by
Table 3. The tracer is initially injected until t, = 4000 s.

We begin by computing the evolution of the variance associated to the upscaled reactive problem (9)-(11). The result is
presented in Fig. 8. Observation of the evolution of the variance lets us detect the three different regimes of diffusion.

e For t* <« 2.5 - 10°, the fluid obeys to the classical diffusive regime, with the diffusion coefficient D* (actually, the
diffusion D* is so small here that it is difficult to differentiate the line of slope D* of the horizontal axis).

o Then, for 2.5- 10° « t*, we clearly observe a zone of anomalous regime where o%(t) % Ct, C € R, followed by a return
to a diffusive regime.

The point is to detect the transition times from anomalous to enhanced diffusion. A method, e.g. used in [39], consists
in observing eventual asymmetry in the concentration profiles. Some of them, computed during the anomalous period, are
presented in Fig. 9. Nevertheless this method is obviously not practicable neither confident at large times.

Observation of anomalous regime should be confirmed by the computation of the skewness Sk, defined by

Mo(£)*M5(t) — 3Mo(t)M;(£)Ma(t) + 2M; (1)*

Sk(t) = e

The skewness is an indicator of the symmetry of the concentration’s distribution. Results are presented in Fig. 10. The
negative value of the skewness indicates an asymmetric profile with a left tail more pronounced than the right tail (as
in Fig. 9). Computation of the skewness evolution seems to be the right tool to assert that Fickian behavior can only be
supposed for 107 s. < t*.

e For t* > 107 s (see Fig. 11), we turn back to a diffusive regime, actually a Taylor’s type enhanced diffusion regime: the
value of the effective diffusion is given by the slope of the tangent to the curve of the squared variance.

We note easily that Taylor’s enhanced diffusion is drastically increased by the reactive effects by comparing the slope of
the asymptotes at large times of variance curves for reactive and Taylor’s settings (Figs. 11 and 12 respectively): in Fig. 11,
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Fig.9. Asymmetric profiles (with respect to space) during the period of anomalous diffusion at times t* = 4 - 10°s,5 - 10, 6 - 10° s and 6.5 - 10 s.
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Fig. 10. Evolution of the skewness corresponding to Fig. 8.
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Fig. 11. Evolution of the variance for the reactive problem at larger times.

a line of slope D™ would be hard to distinct from an horizontal line. In Fig. 8 (respectively Fig. 12), line of slope D™ is
‘tgrandc’ (respectively ‘tgrandtt’).

Furthermore, by comparing Figs. 11 and 12, we check straightforward that Taylor’s regime of enhanced diffusion appears
much later in presence of reactions. Kinetics make the anomalous diffusion regime longer.
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Fig. 12. Evolution of the variance corresponding to Taylor’s setting (without reactions). The straight line has a slope of value D™, D™ being the value
of the enhanced diffusion during the second Fickian regime as t* > 4 - 10%. The first Fickian regime, characterized by the diffusion D*, is detectable by
zooming to smaller times t* < D~1/3 ~ 30s.
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Fig. 13. Comparison (with a boxed zoom) between the profiles of solutions issued of the effective model (9) (‘e££200’) with the ones issued of (15)
(‘g10200’) and of Taylor's model (4) (‘tay200’) at time t* = 200 s.

4.3. Effects of the kinetics on the convection

In the former subsection, we have shown that the effective model, despite being derived from the conventional diffusive
Fick law at the microscopic level, exhibits anomalous and enhanced diffusive effects. Moreover, the effect of boundary
adsorption increases the deviation from the Gaussian distribution.

Now, we aim to emphasize that the reactions also have influence on the apparent mean velocity of the flow. We thus
introduce the following equation, which is Eq. (9) where we have suppressed all the retardation terms which act on
convection:

acglob

2 *acglob ) BZCglob k* k* 2 pt* . .
= _ D* 1 PeZ icglob R e—ks (t*—&)/Kg Cglob . d
i 3% ow t a5t 3 (x*)2 + K k:) Jo (. 8)ds
1 H k ¢
— —Per Day — = CgIOb
3

%k * k* 2 k*
+ e*ks t*—&)/K, s t — —25s Cglob . 6)d
Kx K /0 K =% K (. $)dg
— 5 pmk/KS ) + lpeT DaTﬁi gt* —1))+ e—k?f*/’(e*ig H (15)
K Ky 3 Ky Kf \ K
We then compare the solutions issued of (9) with the ones issued of (15) and of Taylor's model without kinetics (4).
Computations performed at t* = 200 and t* = 1000, 1400 are presented in Figs. 13-15. First, for small times, the effective
convectional velocity seems to slightly increase (see the retard of curve ‘glo’ with regard to curve ‘ef£’ in Fig. 13). But as
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Fig. 14. Comparison between the profiles of solutions issued of the effective model (9) (‘EFF1000’) with the ones issued of (15) (‘GL01000’) and of Taylor’s
model (4) (‘TAY1000’) at time t* = 1000 s.
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Fig. 15. Comparison between the profiles of solutions issued of the effective model (9) (‘EFF1400’) with the ones issued of (15) (‘GL01400’) and of Taylor’s
model (4) (‘TAY1400’) at time t* = 1400 s.

of t* = 1000, we observe easily in Fig. 14 the retard of curve ‘eff’ with regard to the curve ‘glo’, except at the front of the
profile. We also provide the curves corresponding to Taylor’s situation ‘tay’ without reactions to compare this effect with
the one due to reactions. This phenomenon worsens for larger times. It means that the wall reactions globally slow down
the mean flow of the solute.

5. Other examples of effective models

We present finally numerical illustrations for some other effective models: the one derived rigorously in [21] for
Danckwerts boundary condition in Section 5.1, and the one for nonlinear reactions of [41] in Section 5.2. All the results
presented below aim to show the efficiency of the effective models. They show the smallness of the error between exact
and effective approximate solution and the advantage of effective models over the models obtained by taking the simple
mean over the vertical section.

5.1. Danckwerts boundary condition

We assume now an infinite adsorption rate: k{ = 4oc in (7), that is —D*9,«c* = K,.d;c* on I"*. At the inlet boundary,
we suppose the Danckwerts boundary condition. We have an infiltration with a pulse of water containing a solute of
concentration cf followed by solute-free water. Then the Danckwerts boundary condition at x* = 0 is

—D* 9™ + q(y*)c" = q(y")c;  for0 < " < to,
—D*9c* +q(y*)c* =0 fort* > ty.
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Fig. 16. Comparison at times t* = 0.1, 1, 2, 3 of the effective and exact solutions corresponding to a Danckwerts left boundary condition with t, = 1 and
an infinite adsorption rate.
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Fig. 17. Comparison at times t* = 0.1, 0.7, 1.5, 2.5 of the effective and exact solutions corresponding to a Danckwerts left boundary condition with
to = 0.2 and an infinite adsorption rate.

The corresponding effective problem is (see its rigorous derivation in [21]):

acke™  20* g 4 2 Dag(2 +7Dag) T\ 92ciem
1 + Dag) —X = X __—_p*(14+-—Pe?|= K 16
(+Da) = =+ 3 e Ttz T (1 + Day)? 3(x)? (16)
with Dax = K./H, completed by the initial and boundary conditions
20*
—D*ax*q?efflx:o + T(C;’eff‘x:o - Cf*X(O,[O)) =0, (17)
c;g’e“‘tzo = c}y- (18)

For the simulations presented in Figs. 16-17, we take cf* = 0.5,c0 = 0, = 1.73, ¢ = 0.001 and we test successively
withtyg = 1and t; = 0.2.

5.2. Nonlinear kinetics

Finally, we consider some nonlinear models of reactions. Thus condition (7) is replaced by

ack¥ .
* * s * * * * *
—D"9y+C =@=k5(q§(c )—c;/K;) onI™, (19)
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Fig. 18. Comparisons between concentrations issued from the effective problem (‘ef £3’), from the sectional average of the solution of the original problem
(‘freundlich3d’) and from the simple average (‘moy3’), using Freundlich isotherm characterized by k, = 3 at time t = 300 s.
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Fig. 19. Comparison between concentrations issued from the effective problem (‘ef£2’), from the sectional average of the solution of the original problem
(‘langmuir?2’) and from the simple average (‘moy2’), using Langmuir isotherm characterized by k, = 2 at time t = 300 s.

where @ is the isotherm function. Typical examples for @ are given by the Langmuir and Freundlich isotherms:

k1C
D(c) = T (Langmuir); @(c) = kic*  (Freundlich). (20)
Ko C
In the present work, we fix k; = 1 and use different values for k.
Choosing the same scalings than in the previous sections, the authors of [41] have derived formally (using an anisotropic
perturbation method) the corresponding effective model. It reads

ct Q* 8 2k;Pe
e (6 5 ) e (B g o) =0 (14 gggre i + 20w 1)
deeCiy = D(cy + Percy) — kjcky (22)
Oy = ——0eCy — =, kg = —.
N7 ™ N 3 47 Ky

Problem (21)-(23) is thus the equivalent of Eq. (9) in case of nonlinear reactions. The main difference is due to the
nonlinearity of the definition of the reaction which does not allow to decouple the problem for ¢* from the problem for
c¢;. We thus have to consider here a system of two coupled PDE’s. Other difference lies in the justification of the effective
model (21)—(23) Article [41] contains its formal derivation but no error estimates. For the numerical simulations, we fix
k¥=1K= Q* . The physical parameters are those already given in the Table 1 and we choose the following initial and
left boundary conditions:

Cp=0 = 1, (=0 = 0.
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First, we take k, = 3 with Freundlich’s adsorption isotherm. Next, we use the Langmuir’s adsorption isotherms for the
value k, = 2. Corresponding results are in Figs. 18-19.
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