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a b s t r a c t

The paper is devoted to the longitudinal dispersion of a soluble substance released in a
steady laminar flow through a slit channel with heterogeneous reaction at the outer wall.
The reactive transport happens in the presence of a dominant Péclet number and order one
Damköhler number. In particular, these Péclet numbers correspond to Taylor’s dispersion
regime. An effective model for the enhanced diffusion in this context was derived recently.
It contains memory effects and contributions to the effective diffusion and effective
advection velocity, due to the flow and chemistry reaction regime. In the present paper, we
show through numerical simulations the efficiency of this new model. In particular, using
Taylor’s ‘historical’ parameters, we illustrate that our derived contributions are important
and that using them is necessary in order to simulate correctly the reactive flows. We
emphasize three main points. First, we show how the effective diffusion is enhanced by
chemical effects at dispersive times. Second, our model captures an intermediate regime
where the diffusion is anomalous and the distribution is asymmetric. Third, we show how
the chemical effects also slow down the average speed of the front.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the evolution of a soluble substance introduced into the Poiseuille flow in a slit channel. In fact, this problem
could be studied in three distinct regimes: (a) diffusion-dominatedmixing; (b) Taylor’s dispersion-mediatedmixing; (c) chaotic
advection. We focus our analysis to regime (b), corresponding to the dominant Péclet numbers, but smaller than a threshold
value. We also consider the transition between (a) and (b).

If the channel is the domain Ω∗,

Ω∗
= {(x∗, y∗) : x∗

∈ R, |y∗
| < H},

the height of the channel being denoted by H,H > 0, the equation governing the evolution of the solute concentration c∗ is

∂c∗

∂t∗
+ q(y∗)

∂c∗

∂x∗
− D∗

∂2c∗

∂(x∗)2
− D∗

∂2c∗

∂(y∗)2
= 0 in Ω∗, (1)

where q(z) = Q ∗(1− (z/H)2) is the Poiseuille profile, Q ∗ being themaximum velocity at the axis, while D∗ is the molecular
diffusion. Eq. (1) is of course completed by appropriate initial and boundary conditions. Boundary conditions are especially
important in the present work since theymodel the reactionswith thewalls.Wewill turn back to this point somewhat later.
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Let us first focus on Eq. (1) and introduce appropriate scales to emphasize the significance of a dominant Péclet number. The
obvious transversal length scale is H . For all other quantities we use reference values denoted by the subscript R. Setting

c =
c∗

cR
, x =

x∗

LR
, y =

y∗

H
, t =

t∗

TR
,

Q =
Q ∗

QR
, D =

D∗

DR
,

where LR is the ‘observation distance’, we obtain the dimensionless equation

∂c
∂t

+
QRTR
LR

Q (1 − y2)
∂c
∂x

−
DRTR
L2R

D
∂2c
∂x2

−
DRTR
H2

D
∂2c
∂y2

= 0 (2)

in

Ω = R × (−1, 1).

The times scales involved in this equation are

TL = characteristic longitudinal time scale =
LR
QR

,

TT = characteristic transversal time scale =
H2

DR
.

We define a small parameter ε by

ε =
H
LR

.

The Péclet number Pe, defined by

Pe =
LRQR

DR
,

being supposed to be dominant but before a threshold, assume there exists 0 < α < 2 such that Pe = ε−α . The lower order
process of diffusion is rescaled by TT

TL
=

HQR
DR

ε = O(ε2−α). Choosing the dispersive time for reference time by setting

TR = TL,

Eq. (2) yields

∂cε

∂t
+ Q (1 − y2)

∂cε

∂x
= Dεα ∂2cε

∂x2
+ Dεα−2 ∂2cε

∂y2
in Ω. (3)

Clearly, there is a great anisotropy in the former equation. The dispersion is due to this combined action of dominant
convection parallel to the axis and molecular diffusion in the radial direction. Actually, in fundamental papers [1,2], Taylor
and Aris found the following one-dimensional approximation for (1) with no-flux (Neumann) boundary conditions on the
side walls:

∂t∗cTay +
2Q ∗

3
∂x∗cTay − DTay∂2

x∗c
Tay

= 0 in R+. (4)

In (4), the effective axial diffusivity contains a contribution proportional to the square of the transversal Péclet number in
addition to the original molecular diffusivity:

DTay
= D∗


1 +

8
945

Pe2T


, PeT =

Q ∗H
D∗

. (5)

The solute is convected by the average velocity of the flow ⟨q⟩ = 2Q ∗/3 and diffuses with respect to the Taylor’s dispersion
coefficient DTay.

Taylor’s paper [1] was the first one of a huge literature on the subject. This does not allows us to give an exhaustive
list of references. Let us only mention the mostly used methods. Roughly speaking, passing from the two-dimensional
equation (1) to the one-dimensional equation (4) corresponds to a vertical averaging. Difficulty is that the equation for
the difference between physical and averaged concentrations is not closed because of the dispersive source term ∂x⟨qc∗

⟩.
For its determination one should go to the next order and actually solve an infinite system of equations. Derivation of (4)
is thus linked with the choice of the ‘closure scheme’. Aris [2] presented a formal derivation of Taylor’s approximation
using the method of moments. This method, further developed by Brenner and collaborators (e.g. [3]) is still very common
nowadays. Other interesting series expansion methods are in works [4–6]. An important step is to ‘‘justify’’ the closure
of the computations (or the truncation of the series expansion) either by orders of magnitude arguments (e.g. [7–9]), or
by homogenization techniques (e.g. [10]) or volume averaging approach (e.g. [11]; this latter approach being adapted for
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complex geometries) or by a center manifold argument (e.g. [12]). Very different approaches consist in starting from the
position process of each molecule with an appropriate description of its transition probability function (e.g. [13]). The
Taylor–Aris result (4) is then equivalent to the asymptotic Gaussian nature of the process. Such a probabilistic analysis
may lead to a variety of non-local transport models (e.g. [14]). In particular, some abstract assumptions on the transitions
between jumps of themolecules lead to kernelmemory terms comparable to those used in the present paper, thoughderived
with a very different method. We finally mention derivation of (reversible) non-parabolic models, using statistical physics,
in papers [15–18].

The approximate models proposed in the latter references are justified for asymptotic large times. Nevertheless, it
is worth mentioning that the literature does not provide information about the induced error. Up to our knowledge,
articles [19–22] give the first derivations of Taylor’s type models controlling the error in energy, without assuming
unrealistically regular data. More precisely, in the latter papers, the optimization of the error estimates is a crucial step
in predicting the effective coefficients.

Moreover, papers [19–22] focus on possible chemical effects. One may guess of course that adsorption and desorption
processes increase the heterogeneity of the solute plume injected in the pipe and thus should influence the final dispersion
phenomenon. Flow with chemistry has already been considered in numerous works, based on the same methods than the
ones listed above, and thuswithout error estimates.Wemention for instance [23–25] (for a reactivemixture, but no reactions
with thewalls) based on themethod ofmoments, [26] based on the Fife and Nicholes expansion, [27] based on [28,29] based
on closure schemes of turbulence modeling and a volume averaging approach, [30] based on the center manifold approach.

The present paper aims at giving numerical illustrations of the results obtained in [22] where adsorption and desorption
reactions occur on the walls of the channel through a linear driving force model with a finite kinetics and a linear isotherm.
In [22], the authors derive rigorously an upscaled Taylor’s type model where influence of the chemical kinetics on the
dispersive effects is explicit. The model was justified through error estimates depending explicitly on the small parameter
ε = H/LR. Presence of an initial time boundary layer allows only a global error estimate in L2 with respect to space and time.

In the present paper, we show through numerical simulations the efficiency of the model derived in [22]. In particular,
using Taylor’s original parameters (see Section 3), we illustrate that the derived contributions are important and that using
them is necessary in order to simulate correctly the reactive flows (see Section 4.1). Themodel derived in [22] is reproduced
in Section 2 (see (9)–(12)). The reader will note that the chemical reactions on the walls produce complicated memory
terms. We thus aim to emphasize three main points through our numerical simulations. First, in Section 4.2, we turn to the
question of anomalous diffusion. We show how the effective diffusion is enhanced by chemical effects at dispersive times.
Furthermore, themodel of [22] also captures an intermediate regimewhere the diffusion is anomalous and the distribution is
asymmetric. Second, in Section 4.3, we showhow the chemical effects also slow down the average speed of the front. Finally,
in Section 5, we present numerical illustrations of some other effective models: the case with the Danckwerts boundary
condition in Section 5.1, and the case of nonlinear reactions in Section 5.2.

2. Exact and upscaled problems

Let us write the precise setting of the problem.We consider the transport of a reactive solute by diffusion and convection
by Poiseuille’s velocity in an infinite two-dimensional channel. The solute particles do not react among themselves. Instead
they undergo an adsorption process at the lateral boundary. For a general discussion on themodeling of adsorption processes
in porous media, we refer to [31,32].

We consider the following exact model for the solute concentration c∗:

∂c∗

∂t∗
+ q(y∗)

∂c∗

∂x∗
− D∗

∂2c∗

∂(x∗)2
− D∗

∂2c∗

∂(y∗)2
= 0 in Ω∗, (6)

−D∗∂y∗c∗
=

∂c∗
s

∂t∗
= k∗

s


c∗

−
c∗
s

K ∗
e


on Γ ∗, (7)

c∗(x∗, y∗, 0) = c∗

00(x
∗), c∗

s (x
∗, 0) = c∗

s0(x
∗). (8)

The crucial difference between problem (6)–(8) and the one originally considered by Taylor is the boundary condition
on the side walls Γ ∗

= {(x∗, y∗) : x∗
∈ R, |y∗

| = H}. Taylor assumed no-flux conditions. Here Eq. (7) describes
reaction at channel wall Γ ∗ linking the solute concentration c∗ and the adsorbed species surface concentration c∗

s . The
adsorption rate constant is k∗

s (homogeneous to a velocity), the linear adsorption equilibrium constant is K ∗
e (length), the

constant desorption rate being characterized by k∗
s /K

∗
e . These quantities are all positive real numbers. Eq. (8) describes initial

infiltration with a mollified Dirac pulse of water containing a solute of volume concentration c∗

00 and the adsorbed species
surface concentration c∗

s0. In [22], we assume c∗

00 ∈ C∞

0 (R), c∗

00 ≥ 0 and c∗

s0 ∈ C∞

0 (R), c∗

s0 ≥ 0. Following Taylor’s example
(B1) (see [1, page 192]), we can take for c∗

00 the mollified Dirac measure of massM , concentrated at x = 0.
We have already explained in the Introduction how appropriate scales have to be chosen ensuring the Péclet number in

the range of the Taylor’s dispersion regime (see the derivation of (3)).We nowhave to describe the order ofmagnitude of the
kinetics, characterized by the Damköhler number defined below. If we introduce reference values denoted by the subscript
R in the reaction equation (7), three characteristic time scales appear,
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TDe = characteristic desorption time scale =
KeR
ksR

,
TA = characteristic adsorption time scale =

csR
cRksR

,
Treact = superficial chemical reaction time scale =

H
ksR

,

with the Damköhler number defined by

Da =
LR

TAQR
.

Assuming KeR ≈ H , and the time scales TDe, TA and TL of the same order, implies Damköhler’s number of order one (with
respect to ϵ, that is of order ϵ0). We will see below that this order one (to be compared with the order ϵα, α > 0, of the
Péclet number) is sufficient to ensure that the kinetics appear at the main scale in the upscaled model. Hence one should
take care simultaneously of the flow and of the chemical reactions.

It should be noted that transport models derived for nonreactive solutes are often used, in conjunction with
experimentally-derived correctors, to predict the transport of reactive chemicals. Here instead we used an upscaled model
rigorously derived in [22]. In [22], the authors prove that the upscaled problem in R+ corresponding to (6)–(8) for the basic
dimensional effective concentration ceff is the following: find ceff ∈ L2((0, T ) × R) such that

∂ceff

∂t∗
+

2
3
Q ∗

∂ceff

∂x∗
− D∗


1 +

8
945

Pe2T


∂2ceff

∂(x∗)2
+

k∗
s

K ∗
e
ceff −


k∗
s

K ∗
e

2  t∗

0
e−k∗s (t∗−ξ)/K∗

e ceff(·, ξ)dξ

−
1
3
PeTDaT

H
K ∗
e

k∗
s

K ∗
e


ceff +

 t∗

0
e−k∗s (t∗−ξ)/K∗

e


k∗
s

K ∗
e

2

(t∗ − ξ) − 2
k∗
s

K ∗
e


ceff(·, ξ)dξ



+
4
45

H
K ∗
e
PeTk∗

s


∂xceff −

k∗
s

K ∗
e

 t∗

0
e−k∗s (t∗−ξ)/K∗

e ∂xceff(·, ξ)dξ



=
k∗
s

K ∗
e
e−k∗s t

∗/K∗
e


c∗

s0

K ∗
e

+
1
3
PeT DaT

c∗

s0

K ∗
e

H
K ∗
e


k∗
s

K ∗
e
t∗ − 1


+ e−k∗s t

∗/K∗
e

4
45

k∗
s

K ∗
e

H
K ∗
e
PeT ∂xc∗

s0, (9)

ceff
|t=0 = c∗

00, (10)
where the transversal Péclet et Damköhler numbers, PeT and DaT are given by

PeT =
Q ∗H
D∗

and DaT =
k∗
s

Q ∗
.

Existence of a unique solution ceff ∈ H1(0, T ;H2(R)) is proved in [22]. Then the dimensional effective solute and sorbed
concentrations read

cefffull(x
∗, y∗, t∗) = ceff(x∗, t∗) + HPeT∂xceff(x∗, t∗)


1
6
y∗2

H2
−

1
12

y∗4

H4
−

7
180


+


1
6

−
y∗2

2H2


PeTDaT

H
K ∗
e

×


ceff(x∗, t∗) −

k∗
s

K ∗
e

 t∗

0
e−k∗s (t∗−ξ)/K∗

e ceff(x∗, ξ) dξ


−


1
6

−
1
2
y∗2

H2


c∗

s0

K ∗
e
e−k∗s t

∗/K∗
e PeTDaT , (11)

ceffs (x∗, t∗) = c∗

s0e
−k∗s t

∗/K∗
e + TLk∗

s

 t∗

0
e−k∗s (t∗−ξ)/K∗

e cefffull(x
∗, ξ) dξ (12)

and it gives an approximation of order O((εPeT )3/2) of c∗ and c∗
s . More precisely, the approximation is justified rigorously

by the following error estimate.

Proposition 1. Let 1 ≤ α < 2 and assume that the times scales TA, TDE and TL are of the same order (not depending on ϵ).
Assume that (c∗

00, c
∗

s0) ∈ (C∞

0 (R))2. Let ceff ∈ H1(R+;H2(R)) the solution for (9)–(10). Then we havec∗
− cefffull


L2(Ω∗×(0,T ))

+

c∗

s − ceffs


L2(Γ ∗×(0,T ))

≤ C((εPeT )3/2)

∥c∗

00∥H3(R) + ∥c∗

s0∥H2(R)


. (13)

On the one hand, in the first line of the effective equation (9), we easily recognize Taylor’s model of dispersion. On
the other hand, adsorption/desorption reactions introduce complex retardation and memory terms. Some characteristic
parameters based on the data fromTaylor’s article [1] are given in the next section. Let us heremention briefly two important
Taylor’s examples, onewith α = 1.614,H = 2.6 ·10−4 m, the longitudinal Péclet number Pe = 0.95 ·105 and PeT = 78 and
the second onewith α = 1.96,H = 2.6 ·10−4 m, the longitudinal Péclet number Pe = 4.14 ·106 and PeT = 173. Obviously,
in Taylor’s situation, our derived contributions are important and using them is necessary in order to simulate correctly the
reactive flows. Sincewe cannot neglect the complex term induced in themodel by the kinetics, we give a precise description
of their effects in the present paper, through numerical simulations.
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Table 1
Parameters values in Taylor’s paper.

Parameters Values

Width of the slit: H 5 · 10−3 m
Characteristic length: LR 0.632 m
ε = H/LR 7.9113 · 10−3

Characteristic velocity: Q ∗ 3 · 10−3 m/s
Diffusion coefficient: D∗ 2 · 10−7 m2/s,
Longitudinal Peclet number: Pe = LRQ ∗/D∗

= 9.48 · 103

α = log Pe/ log(1/ε) = 1.8921440
Transversal Peclet number: PeT = HQ ∗/D∗

= 75

3. Taylor’s example

All the numerical illustrations of the paper have been computed using the package FreeFem++ [33] and the following
space and time discretization.

• Discretization in time. The first order operator is discretized using the method of characteristics. More precisely, a
convection equation of the form

∂tc + q · ∇c = f (x, t),

being given, the one step backward convection scheme by the methods of characteristics reads as follows
1
δt

(cn+1(x)) − cn(Xn(x)) = f n(x)

where cn denotes the approximation of the solution c at time tn = nδt , and Xn(x) is an approximation of the solution at
time tn of the ordinary differential equation

dX
dt

(t) = q(X(t), tn), X(tn+1) = x.

A Taylor’s expansion result implies that cn(x − qn(x)δt) is a first order approximation of cn(Xn(x)). We get the one step
backward convection scheme reading:

1
δt


cn+1(x) − cn(x − qn(x)δt)


= f n(x).

Turning back to our complete problem with the diffusion term, we use the following scheme:
1
δt


cn+1(x, y) − cn(x − q(y)δt, y)


−

Dx∂

2
x − Dy∂

2
y


cn+1(x, y) = f (x, y, nδt).

• Discretization in space. One of the characteristics of our problem is the presence of a smeared front. In order to track it
correctly, the Lagrange P1 finite elementswith adaptivemesh are used. Themesh is adapted in the neighborhood of front
after every ten time steps.

We begin our numerical illustrations by an example issued of the pioneer’s work of Taylor [1]. This example is a reference
test in view of emphasizing the differences between a transport without kinetical effects and a transport under order one
Damköhler number as presented in the next sections. We compute the following set of parameters thanks to the precise
description by Taylor of his experimental setup and obtain Table 1. Note that we choose here the critical example from [1]
where α is very close to the threshold value α∗

= 2.
For this set of parameters, we compute the vertical average of the solution c∗ of Eq. (1), and we compare it with the

solution cTay of (4). In order to show that in this situation one cannot neglect Taylor’s dispersive contribution, we also
compute the solution cmoy of a very brute approximation by simple averaging, that is

∂t∗cmoy
+

2Q ∗

3
∂x∗cmoy

− D∗∂2
x∗c

moy
= 0 in R+. (14)

For the three equations, we choose the following initial and left boundary conditions:

c|x=0 = 1, c|t=0 = 0.

Originally this problem is formulated in a semi-infinite channel. In our numerical computations, we have considered a finite
one of length NLR,N ∈ N∗ being chosen sufficiently large for our purpose. This prevents the outflow boundary condition to
influence the tracer breakthrough at the observation points. For instance, setting N = 4 was sufficient for our simulations.
At the outflow we have imposed a homogeneous Neumann boundary condition

∂x∗c|x=NLR = 0.
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Fig. 1. Comparison between concentration from Taylor’s paper (‘tay’) and from the simple average (‘moy’) with the vertically averaged solution of the
original problem (‘exactTay’), at times t∗ = 100, 200, 300, 500 s.

Fig. 2. Comparison between variance computed with the analytical solution (‘sig2_tay’) and with our numerical scheme (‘sigtay’).

Some results are presented in Fig. 1. They show clearly the smallness of the error between exact and Taylor’s approximate
solution and the advantage of Taylor’s model over the model obtained by taking the simple mean over the vertical section.

Note that here, in absence of chemical reactions, we can solve explicitly the effective problem (4) using the integral
formula:

cTay(x, t) = 1 −
1

√
π


exp


⟨q⟩x
DTay


∞

(x+⟨q⟩t)/(2
√

DTayt)
e−η2 dη +


∞

(x−⟨q⟩t)/(2
√

DTayt)
e−η2 dη


, ⟨q⟩ = 2Q ∗/3.

An analogous result holds true for the solution of (14). We thus also have used this first setting to calibrate our numerical
scheme. As an illustration, we present in Fig. 2 the evolution of the variance for small times, computed respectively with our
numerical scheme and with the explicit solution (definition of the variance being recalled in the beginning of Section 4.2).
Obviously, the numerical results meet well the analytical solution. The detailed analysis of the variance is postponed to
Section 4.2.

4. Numerical simulations on the effective model

This section presents the main results of the paper. We develop numerical simulations for the effective model derived
in [22] for Taylor’s dispersion under dominant Damköhler numbers.

4.1. Comparison of the exact and effective solutions

Retardation and memory effects on the dispersive characteristics due to the adsorption/desorption reactions appear in
the effectivemodel (9)–(12). In the present section, we aim to show their importance. In particular, the chemistry influences
directly the characteristic diffusion width. We thus perform similar simulations to the ones presented in Section 3: we
compare now the transverse average of the solution c∗ of the real problem (6)–(8) with the effective approximation defined
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Table 2
Parameters values for the kinetics.

Parameters Values

Adsorption rate constant: k∗
s 2.37 · 10−5 m/s

Adsorption equilibrium constant: K ∗
e 5 · 10−3 m

Longitudinal Damköhler number: Da =
LR

TAQ∗ = 1

Transversal Damköhler number: DaT =
k∗s
Q∗ = 7.9113 · 10−3

Fig. 3. Comparison between concentration from the vertical average of the original problem (‘EXACTT’) and from the effective model (‘EFFT’) at times
t∗ = 100, 200, 300, 500 s.

Fig. 4. Similar results to those of Fig. 3 but computed for a value of ϵ divided by 2.

by (9)–(11).We use the same set of parameters as in Section 3 Table 1with the ones for the reaction characteristics described
in Table 2. We choose k∗

s = Q ∗ϵ, K ∗
e = H, TA = TL.

In presence of the reactions described through (7) and Table 2, the analogue of Fig. 1 is Fig. 3. Clearly, there is a good
agreement between the exact and effective solutions. The small differences are essentially due to the value of parameter
ϵ = H/LR which is quite important in this example. It is sufficient to divide ϵ by 2 (hence diminishing the term C((εPeT )3/2)
in error estimate (13)) to drastically reduce the differences (see Fig. 4).

We add some numerical simulations to highlight the kinetics effects on the solute spread in Figs. 5–7.
In Fig. 5, we present a reference example with the profiles obtained as the height H varies. If H decreases, so does the

transverse Péclet number PeT and the effective diffusion coefficient: we observe a global retardation in the spread of the
front. A decrease of H also means a decrease of the superficial chemical reaction time scale. One observes its effect at the
head of the front.

In Fig. 6, we present a reference example with the profiles obtained when the axial velocity Q ∗ varies. A decrease of Q ∗

means an increase of the transverse Damköhler number DaT . The observed profiles are thus more stiff because they are
more slowed down by a relatively stronger adsorption rate.
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Fig. 5. Comparison between the profile of the effective concentration presented in Fig. 2 when H = 5 · 10−3 (‘effref’) and the one of the effective
concentration when H = N · 10−3 (‘effhN’) at time t∗ = 200 s.

Fig. 6. Comparison between the profile of the effective concentration presented in Fig. 2 when Q ∗
= 3 · 10−3 (‘EFFREF’) and the one of the effective

concentration when Q ∗
= N · 10−3 (‘EFFQN’) at time t∗ = 200 s.

Fig. 7. Comparison between the profile of the effective concentration presented in Fig. 3 when LR = 0.632 (‘EFFREF’) and the one of the effective
concentration when LR = 0.832 (‘EFFRL8’) at time t∗ = 200 s.
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Fig. 7 presents an example with a decrease of both Péclet and Damköhler numbers. It should induce of course a net slow
down of the propagation of the front. This is confirmed by the simulations on the upscaled model (9)–(11) presented in
Fig. 7. Note in particular that with our choice of parameters, the increase of LR induces a decrease of ε = DaT appearing in
(9)–(11).

4.2. Enhanced and anomalous diffusion

We recall that information on a diffusive regime may be obtained by computing, for a given concentration c , the first
moments about the originMk and the associated variance σ 2, defined by

Mk(t) =


+∞

−∞

xkc(x, t) dx, 0 ≤ k ≤ 2,

σ (t)2 = M2(t)M0(t) − M1(t)2.

The characteristic diffusion Dc is then such that σ(t) ∼
√
Dc t . Nevertheless, observations have emphasized the existence of

regimes where σ rather expands as tα, α ≠ 1/2 (see for instance the observations in a sand column described in [34]). This
phenomenon is referred to as anomalous diffusion.

The question of enhanced and anomalous diffusion arises naturally from the fundamental work of Taylor [1].

• Taylor showed that, for sufficiently large time, any point discharge of tracer in laminar pipe Poiseuille flow evolves to
a symmetric Gaussian distribution moving longitudinally with the mean speed of the flow and with a characteristic

diffusion width σ ∼


D∗


1 +

8
945Pe

2
T


t . This is an enhanced diffusion compared to the original one σ ∼

√
D∗t .

• In the mean time, Taylor, in his experiments, noted that for moderate time a distinct asymmetry was observed, in
contradiction with a Fickian behavior.

By ignoring longitudinal diffusion and interactions with the pipe’s boundary, Lighthill [35] showed that the tracer
distribution spreads longitudinally proportional to t for themoderate time. This is perhaps the first observation of anomalous
diffusion in the fluids literature. Then, Chatwin [36] generalized the Aris result for transversely uniform initial data to the full
variance temporal evolution, and computed short time asymptotic behavior of this special case. Short time behavior is also
the preoccupation of [6].More recently, Latini and Bernoff [37] generalized themethod employed by Lighthill to consider the
anomalous spread of an initial distribution before complete transverse mixing has occurred. The authors of [38] employ the
stochastic differential equations underlying the passive scalar equation and the rules of conditional probability to compute,
with no approximations, the moments needed to construct the complete variance valid for all times. The long time limit of
the variance is shown to agree with Taylor’s type result. References for reactive settings are seldom. Motivated by the study
of a flow in a catheterized artery with conductive walls, the authors of [39] considered a similar problem in an annular
pipe, but for a very simple model of reaction, i.e. an instantaneous linear equilibrium. They use a Crank–Nicholson scheme
coupled with series expansion, once again formal, to approximate the mean concentration distribution using the first four
central moments. Let us finally mention the recent work [9] which clearly describes difficulties induced by the modeling of
preasymptotic times and which moreover evaluate mixing.

Difficulty is to determine the short-time limit of the domain of applicability of Taylor’s type models since they are
constructed to hold true at large times. Looking for an answer through numerical simulations was done as soon as some
years after Taylor’s work (see [40]). We now show that the effective model (9)–(11) is able to capture the three regimes of
diffusion encountered in such a problem of tracer injection in a thin pipe.

Diffusive regime Initially, diffusion dominates over advection yielding a spherically symmetric Gaussian dispersion cloud.
Note that in the simplest case of absence of reactions, longitudinal displacement due to diffusion is of order
O(

√
D∗t). The relative longitudinal displacement of two particles is controlled by O(Q ∗D∗t2) due to the

parabolic shear (compare the convective displacement of a particle at the center of the pipe with the one
of a particle that has diffused of O(

√
D∗t) in the transverse direction). This regime is then limited to the

times t ≪ (Q ∗2D∗)−1/3. In the present paper, the time limitation also depends on the kinetics.
Anomalous regimeIn this regime, the displacement due to tracer diffusing transversely and being sheared longitudinally

dominates over the longitudinal diffusion. In this regime, the variance show an anomalous diffusion and
the distribution of solute concentration is distinctly asymmetric.
As emphasized by Latini and Bernoff [37], this kind of phenomenon appears when the majority of the
tracer has not yet interacted with the pipe’s boundary. Here, in the case of reacting wall, the effects are
enhanced.

Taylor’s regime At large times, the flow is in classical Taylor’s regime, for which the tracer is homogenized transversely
across the pipe and diffuses with a Gaussian distribution longitudinally.
In the original setting of Taylor (see Eqs. (4)–(5)), the diffusion is enhanced by the factor 8D∗Pe2T/945. In
the present paper, there is a greater enhancement due to the reactions.
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Table 3
Parameter values for the variances computations.

Parameters Values

Width of the slit: H 10−1 m
Characteristic length: LR 1000 m
ε = H/LR 10−4

Characteristic velocity: Q ∗ 9 · 10−4 m/s
Diffusion coefficient: D∗ 2 · 10−7 m2/s,
Longitudinal Peclet number: Pe = LRQ ∗/D∗

= 4.5 · 106

α = log Pe/ log(1/ε) = 1.6633
Transversal Peclet number: PeT = HQ ∗/D∗

= 450
Adsorption rate constant: k∗

s 9 · 10−8 m/s
Adsorption equilibrium constant: K ∗

e 5 · 10−1 m
Longitudinal Damköhler number: Da =

LR
TAQ∗ = 1

Transversal Damköhler number: DaT =
k∗s
Q∗ = 10−4

Fig. 8. Evolution of the variance (with respect to time) for the reactive problem.

Let us illustrate that the three latter behaviors are captured by model (9)–(11). Due to the complex structure of the
effective equation (9), the observation of these latter phenomena is not obvious. Numerical simulations thus become a
particularly interesting tool.

To deal with large time computations, we slightly modify our set of parameters. Tables 1 and 2 are thus replaced by
Table 3. The tracer is initially injected until t0 = 4000 s.

We begin by computing the evolution of the variance associated to the upscaled reactive problem (9)–(11). The result is
presented in Fig. 8. Observation of the evolution of the variance lets us detect the three different regimes of diffusion.

• For t∗ ≪ 2.5 · 105, the fluid obeys to the classical diffusive regime, with the diffusion coefficient D∗ (actually, the
diffusion D∗ is so small here that it is difficult to differentiate the line of slope D∗ of the horizontal axis).

• Then, for 2.5 ·105
≪ t∗, we clearly observe a zone of anomalous regimewhere σ 2(t) ≁ Ct, C ∈ R, followed by a return

to a diffusive regime.
The point is to detect the transition times from anomalous to enhanced diffusion. A method, e.g. used in [39], consists

in observing eventual asymmetry in the concentration profiles. Some of them, computed during the anomalous period, are
presented in Fig. 9. Nevertheless this method is obviously not practicable neither confident at large times.

Observation of anomalous regime should be confirmed by the computation of the skewness Sk, defined by

Sk(t) =
M0(t)2M3(t) − 3M0(t)M1(t)M2(t) + 2M1(t)3

σ 3(t)
.

The skewness is an indicator of the symmetry of the concentration’s distribution. Results are presented in Fig. 10. The
negative value of the skewness indicates an asymmetric profile with a left tail more pronounced than the right tail (as
in Fig. 9). Computation of the skewness evolution seems to be the right tool to assert that Fickian behavior can only be
supposed for 107 s. ≪ t∗.

• For t∗ ≫ 107 s (see Fig. 11), we turn back to a diffusive regime, actually a Taylor’s type enhanced diffusion regime: the
value of the effective diffusion is given by the slope of the tangent to the curve of the squared variance.

We note easily that Taylor’s enhanced diffusion is drastically increased by the reactive effects by comparing the slope of
the asymptotes at large times of variance curves for reactive and Taylor’s settings (Figs. 11 and 12 respectively): in Fig. 11,



C. Choquet, C. Rosier / Nonlinear Analysis: Real World Applications ( ) – 11

Fig. 9. Asymmetric profiles (with respect to space) during the period of anomalous diffusion at times t∗ = 4 · 106 s, 5 · 106 s, 6 · 106 s and 6.5 · 106 s.

Fig. 10. Evolution of the skewness corresponding to Fig. 8.

Fig. 11. Evolution of the variance for the reactive problem at larger times.

a line of slope DTay would be hard to distinct from an horizontal line. In Fig. 8 (respectively Fig. 12), line of slope DTay is
‘tgrandc’ (respectively ‘tgrandtt’).

Furthermore, by comparing Figs. 11 and 12, we check straightforward that Taylor’s regime of enhanced diffusion appears
much later in presence of reactions. Kinetics make the anomalous diffusion regime longer.
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Fig. 12. Evolution of the variance corresponding to Taylor’s setting (without reactions). The straight line has a slope of value DTay,DTay being the value
of the enhanced diffusion during the second Fickian regime as t∗ ≫ 4 · 104 . The first Fickian regime, characterized by the diffusion D∗ , is detectable by
zooming to smaller times t∗ < D−1/3

≈ 30 s.

Fig. 13. Comparison (with a boxed zoom) between the profiles of solutions issued of the effective model (9) (‘eff200’) with the ones issued of (15)
(‘glo200’) and of Taylor’s model (4) (‘tay200’) at time t∗ = 200 s.

4.3. Effects of the kinetics on the convection

In the former subsection, we have shown that the effective model, despite being derived from the conventional diffusive
Fick law at the microscopic level, exhibits anomalous and enhanced diffusive effects. Moreover, the effect of boundary
adsorption increases the deviation from the Gaussian distribution.

Now, we aim to emphasize that the reactions also have influence on the apparent mean velocity of the flow. We thus
introduce the following equation, which is Eq. (9) where we have suppressed all the retardation terms which act on
convection:

∂cglob

∂t∗
+

2
3
Q ∗

∂cglob

∂x∗
− D∗


1 +

8
945

Pe2T


∂2cglob

∂(x∗)2
+

k∗
s

K ∗
e
cglob −


k∗
s

K ∗
e

2  t∗

0
e−k∗s (t∗−ξ)/K∗

e cglob(·, ξ)dξ

−
1
3
PeT DaT

H
K ∗
e

k∗
s

K ∗
e


cglob +

 t∗

0
e−k∗s (t∗−ξ)/K∗

e


k∗
s

K ∗
e

2

(t∗ − ξ) − 2
k∗
s

K ∗
e


cglob(·, ξ)dξ



=
k∗
s

K ∗
e
e−k∗s t

∗/K∗
e


c∗

s0

K ∗
e

+
1
3
PeT DaT

c∗

s0

K ∗
e

H
K ∗
e


k∗
s

K ∗
e
t∗ − 1


+ e−k∗s t

∗/K∗
e

4
45

k∗
s

K ∗
e

H
K ∗
e
PeT ∂xc∗

s0. (15)

We then compare the solutions issued of (9) with the ones issued of (15) and of Taylor’s model without kinetics (4).
Computations performed at t∗ = 200 and t∗ = 1000, 1400 are presented in Figs. 13–15. First, for small times, the effective
convectional velocity seems to slightly increase (see the retard of curve ‘glo’ with regard to curve ‘eff’ in Fig. 13). But as
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Fig. 14. Comparison between the profiles of solutions issued of the effectivemodel (9) (‘EFF1000’) with the ones issued of (15) (‘GLO1000’) and of Taylor’s
model (4) (‘TAY1000’) at time t∗ = 1000 s.

Fig. 15. Comparison between the profiles of solutions issued of the effectivemodel (9) (‘EFF1400’) with the ones issued of (15) (‘GLO1400’) and of Taylor’s
model (4) (‘TAY1400’) at time t∗ = 1400 s.

of t∗ = 1000, we observe easily in Fig. 14 the retard of curve ‘eff’ with regard to the curve ‘glo’, except at the front of the
profile. We also provide the curves corresponding to Taylor’s situation ‘tay’ without reactions to compare this effect with
the one due to reactions. This phenomenon worsens for larger times. It means that the wall reactions globally slow down
the mean flow of the solute.

5. Other examples of effective models

We present finally numerical illustrations for some other effective models: the one derived rigorously in [21] for
Danckwerts boundary condition in Section 5.1, and the one for nonlinear reactions of [41] in Section 5.2. All the results
presented below aim to show the efficiency of the effective models. They show the smallness of the error between exact
and effective approximate solution and the advantage of effective models over the models obtained by taking the simple
mean over the vertical section.

5.1. Danckwerts boundary condition

We assume now an infinite adsorption rate: k∗
s = +∞ in (7), that is −D∗∂y∗c∗

= Ke∂tc∗ on Γ ∗. At the inlet boundary,
we suppose the Danckwerts boundary condition. We have an infiltration with a pulse of water containing a solute of
concentration c∗

f followed by solute-free water. Then the Danckwerts boundary condition at x∗
= 0 is

−D∗∂x∗c∗
+ q(y∗)c∗

= q(y∗)c∗

f for 0 < t∗ < t0,

−D∗∂x∗c∗
+ q(y∗)c∗

= 0 for t∗ > t0.
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Fig. 16. Comparison at times t∗ = 0.1, 1, 2, 3 of the effective and exact solutions corresponding to a Danckwerts left boundary condition with t0 = 1 and
an infinite adsorption rate.

Fig. 17. Comparison at times t∗ = 0.1, 0.7, 1.5, 2.5 of the effective and exact solutions corresponding to a Danckwerts left boundary condition with
t0 = 0.2 and an infinite adsorption rate.

The corresponding effective problem is (see its rigorous derivation in [21]):

(1 + DaK )
∂c∗,eff

K

∂t∗
+

2Q ∗

3
∂c∗,eff

K

∂x∗
= D∗


1 +

4
135

Pe2T


2
7

+
DaK (2 + 7DaK )

(1 + DaK )2


∂2c∗,eff

K

∂(x∗)2
(16)

with DaK = Ke/H , completed by the initial and boundary conditions

−D∗∂x∗c
∗,eff
K |x=0 +

2Q ∗

3


c∗,eff
K |x=0 − c∗

f χ(0,t0)


= 0, (17)

c∗,eff
K |t=0 = c∗

00. (18)

For the simulations presented in Figs. 16–17, we take c∗

f = 0.5, c00 = 0, α = 1.73, ϵ = 0.001 and we test successively
with t0 = 1 and t0 = 0.2.

5.2. Nonlinear kinetics

Finally, we consider some nonlinear models of reactions. Thus condition (7) is replaced by

− D∗∂y∗c∗
=

∂c∗
s

∂t∗
= k̂∗

s (Φ(c∗) − c∗

s /K
∗

e ) on Γ ∗, (19)
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Fig. 18. Comparisons between concentrations issued from the effective problem (‘eff3’), from the sectional average of the solution of the original problem
(‘freundlich3’) and from the simple average (‘moy3’), using Freundlich isotherm characterized by k2 = 3 at time t = 300 s.

Fig. 19. Comparison between concentrations issued from the effective problem (‘eff2’), from the sectional average of the solution of the original problem
(‘langmuir2’) and from the simple average (‘moy2’), using Langmuir isotherm characterized by k2 = 2 at time t = 300 s.

where Φ is the isotherm function. Typical examples for Φ are given by the Langmuir and Freundlich isotherms:

Φ(c) =
k1c

1 + k2c
(Langmuir); Φ(c) = k1ck2 (Freundlich). (20)

In the present work, we fix k1 = 1 and use different values for k2.
Choosing the same scalings than in the previous sections, the authors of [41] have derived formally (using an anisotropic

perturbation method) the corresponding effective model. It reads

∂t∗


c∗

N +
c∗

s,N

H


+ ∂x∗


2Q ∗

3
c∗

N +
PeT
15

Φ(c∗

N)


= D∗


1 +

8
945

Pe2T


∂2
x∗c

∗

N +
2k∗

dPeT
45

∂x∗c∗

s,N (21)

∂t∗c∗

s,N = Φ(c∗

N + PeT c̃1N) − k∗

dc
∗

s,N (22)

c̃1N =
2H
45

∂x∗c∗

N −
1
3
, k∗

d =
k∗
s

K ∗
e
. (23)

Problem (21)–(23) is thus the equivalent of Eq. (9) in case of nonlinear reactions. The main difference is due to the
nonlinearity of the definition of the reaction which does not allow to decouple the problem for c∗ from the problem for
c∗
s . We thus have to consider here a system of two coupled PDE’s. Other difference lies in the justification of the effective
model (21)–(23). Article [41] contains its formal derivation but no error estimates. For the numerical simulations, we fix
k∗
s = 1, K ∗

e =
H

Q∗·ϵ
. The physical parameters are those already given in the Table 1 and we choose the following initial and

left boundary conditions:
c|x=0 = 1, c|t=0 = 0.
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First, we take k2 = 3 with Freundlich’s adsorption isotherm. Next, we use the Langmuir’s adsorption isotherms for the
value k2 = 2. Corresponding results are in Figs. 18–19.
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