Base Théorique

Transformation de Fourier :

$$g(t) = \frac{1}{2}c + \sum_{n=0}^{+\infty} a_n \sin(2\pi n f t) + \sum_{n=0}^{+\infty} b_n \cos(2\pi n f t)$$
$$a_n = \frac{2}{T} \int_0^T g(t) \sin(2\pi n f t) dt$$
$$b_n = \frac{2}{T} \int_0^T g(t) \cos(2\pi n f t) dt$$
$$c = \frac{2}{T} \int_0^T g(t) dt$$
$$\sqrt{a_n^2 + b_n^2}$$

Limites Théoriques

- Nyquist Bande passante H, sans bruit, V niveaux,

$$D_{max}(bit/s) = 2H(Hz)\log_2(V)$$

- Shanon Bande passante H, bruit blanc, S/B rapport signal sur bruit,

$$D_{max}(bit/s) = H(Hz)\log_2(1 + \frac{S}{B})$$

Bauds

Nombre de changements d'états par seconde.

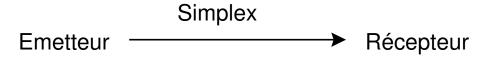
ex : ligne téléphonique f_c , 3400Hz, caractère 8 bits

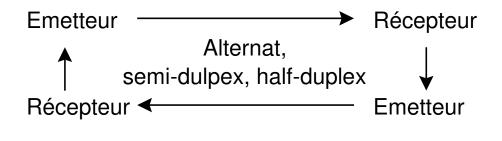
Débits	Période	Première harmonique	Nombre d'harmoniques	
(bit/s)	(T, ms)	(f,Hz)	transmises	
300	26,67	37,5	80	
600	13,33	75	40	
1200	6,67	150	20	
2400	3,33	300	10	
4800	1,67	600	5	
9600	0,83	1200	2	

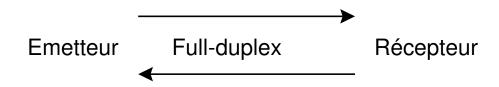
Les Modems

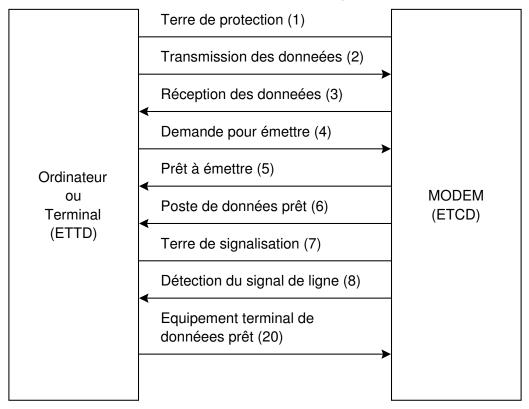
(Modulateurs/Démodulateurs)

Modulation d'amplitude


Modulation de fréquence




Modulation de phase


Sens de transmission

Jonctions V.24, RS 232 C

- ETTD Equipement Terminal de Traitement de Données
- ETCD Equipement Terminal de Circuit de Données

	Avis	Débits	Type	Vitesse de	Exploitation
(CCITT	(bit/s)	de modulation	modulation	
	V.22	600/1200	Phase	600	FD
	V.23	600/1200	Fréquence	600/1200	HD
	V.23	1200/75	Fréquence	1200/75	FD
	V.26	2400	Phase	1200	FD
	V.27	4800	Phase	1200	FD ou HD
	V.29	4800/9600	Phase + Amplitude	4800/9600	FD
	V.32	4800/9600	Phase + Amplitude	2400	FD
	V.34	jusqu'à 28800	Phase + Amplitude	3200	FD

Cables Téléphoniques Paires Torsadées

deux conducteurs en cuivre isolés l'un de l'autre, et enroulé de façon hélicoïdale. Avantage :

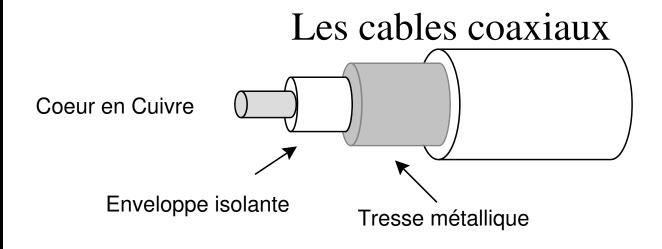
- permet des communication de plusieurs dizaines de km,
- des débits de quelques kbit/s à quelques dizaines (centaines) de Mbit/s suivant la qualité et l'utilisation.

Paires Torsadées

Paire Torsadée 10BaseT (T pour Twisted Pair),

Paire Torsadée 100BaseT,

Paire Torsadée 1000BaseT,


Double paire torsadée non blindée, longueur maximum = 100m,

Topologie en étoile, Prise RJ45, Transceiver paire torsadée,

Avantages:

- identique à d'autre cablages (téléphone, ...),
- pas de station pirate,
- centralisation des équipements,

- assez cher,
- limitation en distance,
- trés sensible aux perturbations,

Gaine de protection en plastique

Deux types:

- 75 *ohms* : Transmission analogique

- 50 *ohms* : Transmission numérique

Câble coaxial

10Base5 (10 pour 10 Mbit/s),

Gros câble, câble jaune, longueur max. = 500 m,

Topologie en bus, Transceiver vampire,

Avantages:

- pas de perturbation quand on ajoute une station,
- trés bien normalisé depuis longtemps,
- peu dépendant des erreurs des utilisateurs.

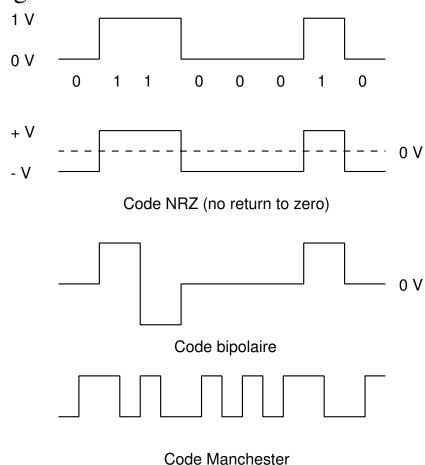
- cher,
- peu maniable,
- sensible aux perturbations élactromagnétiques.

Câble coaxial

10Base2 (2 pour 200 m),

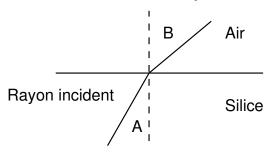
Ethernet fin,, longueur max. = 185 m,

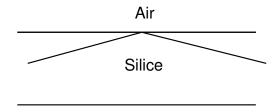
Topologie en bus, Transceiver en T (possibilité de raccord BNC),


Avantages:

- le moins cher,
- trés maniable.

- si on enlève un transceiver on arrête le réseau,
- peu maniable,
- sensible aux perturbations élactromagnétiques,
- limité en distance.


Transmission en bande de base


Ce sont des signaux binaires ex :

Fibres Optiques

Rayon réfracté

Deux types:

- multimode : plusieurs rayons,
- monomode : un seul rayon.

1000baseFx 1Gbit/s portée 3km

Fibres Optiques

ex : Ethernet peu normalisées, utilisable de point à point ou en étoile (étoile optique au centre), un transceiver optique assure la transformation optique électrique. distance max. $1,5\ km$, 1 fibre en émission, 1 fibre en réception.

Avantages:

- insensible aux perturbations,
- longues distances,
- gros débits possibles.

- cher,
- peu maniables.

Autres Moyens

- faisceaux hertziens,
- rayon infra-rouge,
- laser,
- satellites(relais).

Bluetooth

- Transmission hertzienne
- Débit théorique 1 Mbit/s
- Portée de quelques dizaines de mètres
- Très peu gourmand en énergie
- Norme IEEE 802.15.1

WIFI

- Wireless Fidelity
- Portée de quelques dizaines de mètres en intérieur jusqu'à 300 m en milieu ouvert
- 802.11.bDébit théorique 11 Mbit/s (6 Mbit/s réels ?)
- 802.11g
 Débit théorique 54 Mbit/s (30 Mbit/s réels ?)
 Matériel compatible avec 802.11b